Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 66-75
Cet article a éte moissonné depuis la source Math-Net.Ru
Periodic trajectories of billiards in rational polygons satisfying the Veech alternative, in particular, in right triangles with an acute angle of the form $\pi/n$ with integer $n$ are considered. The properties under investigation include: symmetry of periodic trajectories, asymptotics of the number of trajectories whose length does not exceed a certain value, stability of periodic billiard trajectories under small deformations of the polygon.
@article{MZM_1997_62_1_a6,
author = {Ya. B. Vorobets},
title = {Billiards in rational polygons: {Periodic} trajectories, symmetries and $d$-stability},
journal = {Matemati\v{c}eskie zametki},
pages = {66--75},
year = {1997},
volume = {62},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/}
}
Ya. B. Vorobets. Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/
[1] Vorobets Ya. B., “Ploskie struktury i bilyardy v ratsionalnykh mnogougolnikakh: alternativa Vicha”, UMN, 51:5 (1996), 3–42 | MR | Zbl
[2] Veech W. A., “Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards”, Invent. Math., 97:4 (1989), 553–583 | DOI | MR | Zbl
[3] Vorobets Ya. B., “Ploskie struktury i bilyardy v ratsionalnykh mnogougolnikakh”, UMN, 51:1 (1996), 145–146 | MR | Zbl
[4] Berdon A., Geometriya diskretnykh grupp, Nauka, M., 1986 | MR
[5] Vorobets Ya. B., Galperin G. A., Stepin A. M., “Periodicheskie bilyardnye traektorii v mnogougolnikakh: mekhanizmy rozhdeniya”, UMN, 47:3 (1992), 9–74 | MR | Zbl