Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 66-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodic trajectories of billiards in rational polygons satisfying the Veech alternative, in particular, in right triangles with an acute angle of the form $\pi/n$ with integer $n$ are considered. The properties under investigation include: symmetry of periodic trajectories, asymptotics of the number of trajectories whose length does not exceed a certain value, stability of periodic billiard trajectories under small deformations of the polygon.
@article{MZM_1997_62_1_a6,
     author = {Ya. B. Vorobets},
     title = {Billiards in rational polygons: {Periodic} trajectories, symmetries and $d$-stability},
     journal = {Matemati\v{c}eskie zametki},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/}
}
TY  - JOUR
AU  - Ya. B. Vorobets
TI  - Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability
JO  - Matematičeskie zametki
PY  - 1997
SP  - 66
EP  - 75
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/
LA  - ru
ID  - MZM_1997_62_1_a6
ER  - 
%0 Journal Article
%A Ya. B. Vorobets
%T Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability
%J Matematičeskie zametki
%D 1997
%P 66-75
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/
%G ru
%F MZM_1997_62_1_a6
Ya. B. Vorobets. Billiards in rational polygons: Periodic trajectories, symmetries and $d$-stability. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a6/