Approximation to the Sobolev classes $W_q^r$ of functions of several variables by bilinear forms in $L_p$ for $2\le q\le p\le\infty$
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the approximation of functions of several variables by bilinear forms that are the pairwise products of functions of fewer variables. The order of approximation of Sobolev classes $W_q^r$ by bilinear forms in $L_p$ for $2 \le q \le p \le\infty$ is found.
@article{MZM_1997_62_1_a2,
     author = {M. Babayev},
     title = {Approximation to the {Sobolev} classes $W_q^r$ of functions of several variables by bilinear forms in $L_p$ for $2\le q\le p\le\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {18--34},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a2/}
}
TY  - JOUR
AU  - M. Babayev
TI  - Approximation to the Sobolev classes $W_q^r$ of functions of several variables by bilinear forms in $L_p$ for $2\le q\le p\le\infty$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 18
EP  - 34
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a2/
LA  - ru
ID  - MZM_1997_62_1_a2
ER  - 
%0 Journal Article
%A M. Babayev
%T Approximation to the Sobolev classes $W_q^r$ of functions of several variables by bilinear forms in $L_p$ for $2\le q\le p\le\infty$
%J Matematičeskie zametki
%D 1997
%P 18-34
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a2/
%G ru
%F MZM_1997_62_1_a2
M. Babayev. Approximation to the Sobolev classes $W_q^r$ of functions of several variables by bilinear forms in $L_p$ for $2\le q\le p\le\infty$. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 18-34. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a2/

[1] Schmidt E., “Zur Theorie der linearen und nicht linearen Integralgleichungen, I”, Math. Ann., 63 (1906/07), 433–476 | DOI

[2] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, Nauka, M., 1986, 3–113 | MR | Zbl

[3] Temlyakov V. N., “O nailuchshikh bilineinykh priblizheniyakh periodicheskikh funktsii mnogikh peremennykh”, Dokl. AN SSSR, 2:2 (1986), 301–304 | MR

[4] Temlyakov V. N., “Bilineinaya approksimatsiya i prilozheniya”, Tr. MIAN, 187, Nauka, M., 1989, 191–215 | MR

[5] Babaev M.-B. A., “Priblizhenie sobolevskikh klassov funktsii summami proizvedenii funktsii menshego chisla peremennykh i kvazipoperechniki”, Dokl. AN AzSSR, 1986, no. 3, 3–5 | Zbl

[6] Babaev M.-B. A., “O poryadke priblizheniya sobolevskogo klassa bilineinymi formami v $L_p$ pri $1\le q\le p\le2$”, Matem. sb., 182:1 (1991), 122–129

[7] Babaev M.-B. A., “O poryadke priblizheniya sobolevskogo klassa $W_q^r$ bilineinymi formami v $L_p$ pri $1\le q\le2\le p\le\infty$”, Tr. MIRAN, 198, Nauka, M., 1992, 21–40 | Zbl

[8] Akhiezer N. I., Lektsii po teorii approksimatsii, Fizmatgiz, M., 1965

[9] Gluskin E. D., “Norma sluchainykh matrits i poperechniki konechnomernykh mnozhestv”, Matem. sb., 120 (162) (1983), 180–189 | MR | Zbl

[10] Garnaev A. Yu., Gluskin E. D., “O poperechnikakh evklidova shara”, Dokl. AN SSSR, 277:5 (1984), 1048–1052 | MR | Zbl

[11] Birman M. Sh., Solomyak M. Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73 (115) (1967), 331–355 | MR | Zbl

[12] Maiorov V. E., Predstavleniya i nailuchshee priblizhenie na klassakh funktsii mnogikh peremennykh, Diss. ... k. f.-m. n., MISI, M., 1976

[13] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960