Four counterexamples to the Fubini theorem
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 124-127
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study signed measures. Our main results are as follows: the Fubini theorem is not true in the general case; the Jordan parts of a transition measure are not necessarily transition measures; the operation of taking the Jordan parts does not necessarily commute with multiplying by the initial measure; the product of $\sigma$-bounded measures need not be a $\sigma$-bounded measure.
@article{MZM_1997_62_1_a13,
author = {A. V. Uglanov},
title = {Four counterexamples to the {Fubini} theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {124--127},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/}
}
A. V. Uglanov. Four counterexamples to the Fubini theorem. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 124-127. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/