Four counterexamples to the Fubini theorem
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 124-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study signed measures. Our main results are as follows: the Fubini theorem is not true in the general case; the Jordan parts of a transition measure are not necessarily transition measures; the operation of taking the Jordan parts does not necessarily commute with multiplying by the initial measure; the product of $\sigma$-bounded measures need not be a $\sigma$-bounded measure.
@article{MZM_1997_62_1_a13,
     author = {A. V. Uglanov},
     title = {Four counterexamples to the {Fubini} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {124--127},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - Four counterexamples to the Fubini theorem
JO  - Matematičeskie zametki
PY  - 1997
SP  - 124
EP  - 127
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/
LA  - ru
ID  - MZM_1997_62_1_a13
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T Four counterexamples to the Fubini theorem
%J Matematičeskie zametki
%D 1997
%P 124-127
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/
%G ru
%F MZM_1997_62_1_a13
A. V. Uglanov. Four counterexamples to the Fubini theorem. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 124-127. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a13/

[1] Uglanov A. V., “Teorema Fubini dlya vektornykh mer”, Matem. sb., 181:3 (1990), 423–432 | Zbl

[2] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | Zbl