Asymptotic analysis of certain classes of singularly perturbed problems on the semiaxis
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 111-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method for asymptotic integration of certain classes of singularly perturbed Cauchy problems on the semiaxis for nonhomogeneous systems of linear ordinary differential equations; this method is a further development of the ideas of the regularization method. This method enables us to prove the existence of a unique bounded (as $\varepsilon\to+0$) solution of such problems and leads to a simpler and more constructive algorithm for obtaining the asymptotic expansion of the solution and singling out all of its singularities in closed analytic form (including the critical case in which the spectral points of the limit operator may touch the imaginary axis). The proposed method supplements and sharpens earlier results.
@article{MZM_1997_62_1_a11,
     author = {Yu. A. Konyaev and Yu. S. Fedorov},
     title = {Asymptotic analysis of certain classes of singularly perturbed problems on the semiaxis},
     journal = {Matemati\v{c}eskie zametki},
     pages = {111--117},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a11/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
AU  - Yu. S. Fedorov
TI  - Asymptotic analysis of certain classes of singularly perturbed problems on the semiaxis
JO  - Matematičeskie zametki
PY  - 1997
SP  - 111
EP  - 117
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a11/
LA  - ru
ID  - MZM_1997_62_1_a11
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%A Yu. S. Fedorov
%T Asymptotic analysis of certain classes of singularly perturbed problems on the semiaxis
%J Matematičeskie zametki
%D 1997
%P 111-117
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a11/
%G ru
%F MZM_1997_62_1_a11
Yu. A. Konyaev; Yu. S. Fedorov. Asymptotic analysis of certain classes of singularly perturbed problems on the semiaxis. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 111-117. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a11/

[1] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981

[2] Fedoryuk M. V., “Asimptoticheskie metody v teorii obyknovennykh lineinykh differentsialnykh uravnenii”, Matem. sb., 79 (121):4 (1969), 477–516 | MR | Zbl

[3] Fedoryuk M. V., “Asimptoticheskie metody v analize”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 13, VINITI, M., 1986, 93–210 | MR

[4] Fedorov Yu. S., “Postroenie fundamentalnoi matritsy singulyarno vozmuschennoi sistemy uravnenii v nekompaktnoi oblasti”, Shkola “Sovremennye metody v teorii kraevykh zadach”, Tezisy dokl., Voronezh, 1992, 111

[5] Fedorov Yu. S., “Asimptoticheskoe integrirovanie kraevoi zadachi na poluosi”, Tr. MEI, 1987, no. 141, 99–102

[6] Konyaev Yu. A., “Obschii podkhod k asimptoticheskomu integrirovaniyu singulyarno vozmuschennykh nachalnykh i kraevykh zadach dlya sistem obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 20:11 (1984), 1999–2003 | MR | Zbl

[7] Konyaev Yu. A., “Issledovaniya nekotorykh klassov regulyarnykh i singulyarnykh kraevykh zadach”, Matem. zametki, 51:2 (1992), 149–151 | MR | Zbl

[8] Konyaev Yu. A., “Konstruktivnye metody mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matem., 1992, no. 2, 57–61 | MR | Zbl

[9] Konyaev Yu. A., “O novom podkhode k issledovaniyu lineinykh singulyarno vozmuschennykh zadach pri nalichii tozhdestvenno kratnykh i mnimykh tochek spektra”, Differents. uravneniya, 21:10 (1985), 1811–1814 | MR | Zbl

[10] Konyaev Yu. A., “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuschenii”, Matem. sb., 1993, no. 12, 133–144 | MR | Zbl