Convergence of a sequence of weakly regular set functions
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 103-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to generalizations of the Dieudonné theorem claiming that the convergence of sequences of regular Borelian measures is preserved under the passage from a system of open subsets of a compact metric space to the class of all Borelian subsets of this space. The Dieudonné theorem is proved in the case for which the set functions are weakly regular, nonadditive, defined on an algebra of sets that contains the class of open subsets of an arbitrary $\sigma$-topological space, and take values in a uniform space.
@article{MZM_1997_62_1_a10,
     author = {V. M. Klimkin and T. A. Sribnaya},
     title = {Convergence of a sequence of weakly regular set functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a10/}
}
TY  - JOUR
AU  - V. M. Klimkin
AU  - T. A. Sribnaya
TI  - Convergence of a sequence of weakly regular set functions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 103
EP  - 110
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a10/
LA  - ru
ID  - MZM_1997_62_1_a10
ER  - 
%0 Journal Article
%A V. M. Klimkin
%A T. A. Sribnaya
%T Convergence of a sequence of weakly regular set functions
%J Matematičeskie zametki
%D 1997
%P 103-110
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a10/
%G ru
%F MZM_1997_62_1_a10
V. M. Klimkin; T. A. Sribnaya. Convergence of a sequence of weakly regular set functions. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 103-110. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a10/

[1] Dieudonné J., “Sur la convergence des suites de mesures de Radon”, An. Acad. Brasil. Ciênc., 23 (1951), 21–38, 277–282 | MR | Zbl

[2] Grothendieck A., “Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$”, Canad. J. Math., 51 (1953), 129–173 | MR

[3] Gänssler P., “A convergence theorem for measures in regular Hausdorff spaces”, Math. Scand., 29 (1971), 237–244 | MR

[4] Aleksandrov A. D., “Additivnye funktsii mnozhestva v abstraktnykh prostranstvakh”, Matem. sb., 9 (51) (1941), 563–628 | MR

[5] Sazhenkov A. N., “Ogranichennost vektornykh mer”, Matem. zametki, 25:6 (1979), 913–917 | MR | Zbl

[6] Guselnikov N. S., “O prodolzhenii kvazilipshitsevykh funktsii mnozhestva”, Matem. zametki, 17:1 (1975), 21–31 | MR | Zbl

[7] Drewnowski L., “Additive and countable additive correspondences”, Rocz. Pol. Tow. Mat. Ser. I, 19:1 (1976), 25–54 | MR | Zbl

[8] Lucia P., Morales P., “Some consequences of the Brooks–Jeweff theorem for additive uniform semigroup-valued functions”, Confer. Sem. Mat. Univ. Bari, 227 (1988), 1–23

[9] Kelli Dzh., Obschaya topologiya, Nauka, M., 1981