Primitive elements of the free groups of the varieties $\mathfrak A\mathfrak N_n$
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 884-889.

Voir la notice de l'article provenant de la source Math-Net.Ru

For groups of the form $F/N'$, we find necessary and sufficient conditions for an element $g\in N/N'$ to belong to the normal closure of an element $h\in F/N'$. It is proved that, in contrast to the case of a free metabelian group, for a free group of the variety $\mathfrak A\mathfrak N_2$, there exists an element $h$ whose normal closure contains a primitive element $g$, but the elements $h$ and $g^{\pm1}$ are not conjugate. In the group $F(\mathfrak A\mathfrak N_2)$, two nonconjugate elements are chosen that have equal normal closures.
@article{MZM_1997_61_6_a8,
     author = {E. I. Timoshenko},
     title = {Primitive elements of the free groups of the varieties $\mathfrak A\mathfrak N_n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {884--889},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a8/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Primitive elements of the free groups of the varieties $\mathfrak A\mathfrak N_n$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 884
EP  - 889
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a8/
LA  - ru
ID  - MZM_1997_61_6_a8
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Primitive elements of the free groups of the varieties $\mathfrak A\mathfrak N_n$
%J Matematičeskie zametki
%D 1997
%P 884-889
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a8/
%G ru
%F MZM_1997_61_6_a8
E. I. Timoshenko. Primitive elements of the free groups of the varieties $\mathfrak A\mathfrak N_n$. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 884-889. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a8/

[1] Evans M. J., “Presentations of the free metabelian group of rank 2”, Canad. Math. Bull., 37:4 (1994), 468–472 | MR | Zbl

[2] Gupta C. K., Gupta N. D., Noskov G. A., “Some applications of Artamonov–Quillen–Suslin theorems to metabelian inner rank and primitivity”, Canad. J. Math., 46:2 (1994), 298–307 | MR | Zbl

[3] Romanovskii N. S., “Svobodnye podgruppy v konechno-opredelennykh gruppakh”, Algebra i logika, 16:1 (1977), 88–97 | MR | Zbl

[4] Romanovskii N. S., “Obobschennaya teorema o svobode dlya pro-$p$-grupp”, Sib. matem. zh., 27 (1986), 154–170 | MR | Zbl

[5] Gupta C. K., Romanovskii N. S., “A generalized Freiheitssatz for centre-by-metabelian groups”, Bull. London Math. Soc., 24 (1992), 71–75 | DOI | MR | Zbl

[6] Yabanzhi G. G., “O gruppakh, konechno-opredelennykh v mnogoobraziyakh $\mathfrak A\mathfrak N_2$ i $\mathfrak N_2\mathfrak A$”, Algebra i logika, 20:1 (1981), 109–120 | MR

[7] Gupta C. K., Romanovskii N. S., “A generalized Freiheitssatz for the variety $\mathfrak A\mathfrak N_2\wedge\mathfrak N_2\mathfrak A$”, Algebra Colloq., 1 (1994), 193–200 | MR | Zbl

[8] Shmelkin A. L., “Dva zamechaniya o svobodnykh razreshimykh gruppakh”, Algebra i logika, 6:2 (1967), 95–109 | MR

[9] Timoshenko E. I., O vklyuchenii dannykh elementov v bazis svobodnoi metabelevoi gruppy, Dep. VINITI, 2699–V88

[10] Romankov V. A., “Kriterii dlya primitivnykh sistem elementov svobodnoi metabelevoi gruppy”, Ukr. matem. zh., 43:7–8 (1990), 996–1002 | MR

[11] Timoshenko E. I., “Ob algoritmicheskoi razreshimosti problemy vklyucheniya v bazis svobodnoi metabelevoi gruppy”, Matem. zametki, 51:3 (1992), 117–121 | MR | Zbl

[12] Romanovskii N. S., “Teorema o svobode dlya grupp s odnim opredelyayuschim sootnosheniem”, Matem. sb., 89:1 (1972), 93–99 | MR | Zbl

[13] Romanovskii N. S., “O nekotorykh algoritmicheskikh problemakh dlya razreshimykh grupp”, Algebra i logika, 13:1 (1974), 26–34 | MR | Zbl