Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_6_a7, author = {V. E. Tarakanov}, title = {Estimates of the independence number of a hypergraph and the {Ryser} conjecture}, journal = {Matemati\v{c}eskie zametki}, pages = {873--883}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a7/} }
V. E. Tarakanov. Estimates of the independence number of a hypergraph and the Ryser conjecture. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 873-883. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a7/
[1] Tarakanov V. E., “O maksimalnoi glubine odnogo klassa $(0,1)$-matrits”, Matem. sb., 75 (117) (1968), 4–14 | MR | Zbl
[2] Tarakanov V. E., “Maksimalnaya glubina proizvolnykh klassov $(0,1)$-matrits i nekotorye ee primeneniya”, Matem. sb., 92 (134) (1973), 472–490 | MR | Zbl
[3] Bollobás B., Extremal graph theory, Acad. Press, London, 1978 | Zbl
[4] Tuza Zs., “Ryser's conjecture for transversals of $r$-partite hypergraphs”, Ars Combin., 16 (B) (1983), 201–209 | MR | Zbl
[5] Haxell P. E., “A note on a conjecture of Ryser”, Period. Math. Hungar., 30:1 (1995), 73–79 | DOI | MR | Zbl
[6] Raizer G. Dzh., Kombinatornaya matematika, Mir, M., 1966