A generalization of Laguerre's theorems on zeros of entire functions
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 855-863
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove some results generalizing the classical Laguerre theorems about the multiplicity and the number of zeros of the function
$$
\sum_{n=0}^\infty\varphi(n)\frac{f^{(n)}(0)}{n!}z^n,
$$
Some specific applications are given.
@article{MZM_1997_61_6_a5,
author = {S. G. Merzlyakov},
title = {A generalization of {Laguerre's} theorems on zeros of entire functions},
journal = {Matemati\v{c}eskie zametki},
pages = {855--863},
publisher = {mathdoc},
volume = {61},
number = {6},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a5/}
}
S. G. Merzlyakov. A generalization of Laguerre's theorems on zeros of entire functions. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 855-863. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a5/