Estimates of the number of zeros of some functions with algebraic Taylor coefficients
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 817-824

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two theorems about the number of zeros of analytic functions from certain classes that include the Siegel $E$-and $G$-functions. By using these theorems, we arrive at a new proof of the Gel'fond-Schneider theorem and improve the result that the numerical determinant does not vanish in the proof of the Shidlovskii theorem.
@article{MZM_1997_61_6_a2,
     author = {A. I. Galochkin},
     title = {Estimates of the number of zeros of some functions with algebraic {Taylor} coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {817--824},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - Estimates of the number of zeros of some functions with algebraic Taylor coefficients
JO  - Matematičeskie zametki
PY  - 1997
SP  - 817
EP  - 824
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/
LA  - ru
ID  - MZM_1997_61_6_a2
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T Estimates of the number of zeros of some functions with algebraic Taylor coefficients
%J Matematičeskie zametki
%D 1997
%P 817-824
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/
%G ru
%F MZM_1997_61_6_a2
A. I. Galochkin. Estimates of the number of zeros of some functions with algebraic Taylor coefficients. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 817-824. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/