Estimates of the number of zeros of some functions with algebraic Taylor coefficients
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 817-824
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove two theorems about the number of zeros of analytic functions from certain classes that include the Siegel $E$-and $G$-functions. By using these theorems, we arrive at a new proof of the Gel'fond-Schneider theorem and improve the result that the numerical determinant does not vanish in the proof of the Shidlovskii theorem.
@article{MZM_1997_61_6_a2,
author = {A. I. Galochkin},
title = {Estimates of the number of zeros of some functions with algebraic {Taylor} coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {817--824},
year = {1997},
volume = {61},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/}
}
A. I. Galochkin. Estimates of the number of zeros of some functions with algebraic Taylor coefficients. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 817-824. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a2/
[1] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987
[2] Siegel C. L., “Über einige Anwendungen diophantischer Approximationen”, Abh. Preuss. Wiss. Phys.–Math. Kl., 1929–1930, no. 1, 1–70
[3] Kheiman U., Meromorfnye funktsii, Mir, M., 1966
[4] Zudilin V. V., “Ob otsenkakh snizu mnogochlenov ot znachenii nekotorykh tselykh funktsii”, Matem. sb., 187:12 (1996), 57–86 | MR | Zbl
[5] Chudnovsky G. V., “On some applications of diophantine approximations”, Proc. Nat. Acad. Sci. USA, 81, March (1984), 1926–1930 | DOI | MR | Zbl