A multidimensional analog of a theorem due to Zygmund
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Zygmund proved an inequality describing the dependence of the modulus of continuity of the adjoint function on that of the original function lying in the space of $2\pi$-periodic continuous functions. The present article contains estimates of partial moduli of continuity of the adjoint function of several variables in the space $C$. Examples show that these estimates are sharp.
@article{MZM_1997_61_5_a8,
     author = {V. A. Okulov},
     title = {A~multidimensional analog of a~theorem due to {Zygmund}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--727},
     year = {1997},
     volume = {61},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/}
}
TY  - JOUR
AU  - V. A. Okulov
TI  - A multidimensional analog of a theorem due to Zygmund
JO  - Matematičeskie zametki
PY  - 1997
SP  - 717
EP  - 727
VL  - 61
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
LA  - ru
ID  - MZM_1997_61_5_a8
ER  - 
%0 Journal Article
%A V. A. Okulov
%T A multidimensional analog of a theorem due to Zygmund
%J Matematičeskie zametki
%D 1997
%P 717-727
%V 61
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
%G ru
%F MZM_1997_61_5_a8
V. A. Okulov. A multidimensional analog of a theorem due to Zygmund. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[2] Zygmund A., “O module ciaglosci sumy szeregu sprzezonego z szeregiem Fouriera”, Prace Mat.-Fiz., 33 (1924), 125–132

[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[4] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl

[5] Pandzhikidze L. K., “Skhodimost kratnykh sopryazhennykh trigonometricheskikh ryadov v prostranstve $C(\mathbb R_n)$ i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 132:3 (1988), 481–483 | MR | Zbl

[6] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl

[7] Nikolskii S. M., “Ryady Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52 (1946), 191–194 | MR