A~multidimensional analog of a~theorem due to Zygmund
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727.

Voir la notice de l'article provenant de la source Math-Net.Ru

Zygmund proved an inequality describing the dependence of the modulus of continuity of the adjoint function on that of the original function lying in the space of $2\pi$-periodic continuous functions. The present article contains estimates of partial moduli of continuity of the adjoint function of several variables in the space $C$. Examples show that these estimates are sharp.
@article{MZM_1997_61_5_a8,
     author = {V. A. Okulov},
     title = {A~multidimensional analog of a~theorem due to {Zygmund}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--727},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/}
}
TY  - JOUR
AU  - V. A. Okulov
TI  - A~multidimensional analog of a~theorem due to Zygmund
JO  - Matematičeskie zametki
PY  - 1997
SP  - 717
EP  - 727
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
LA  - ru
ID  - MZM_1997_61_5_a8
ER  - 
%0 Journal Article
%A V. A. Okulov
%T A~multidimensional analog of a~theorem due to Zygmund
%J Matematičeskie zametki
%D 1997
%P 717-727
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
%G ru
%F MZM_1997_61_5_a8
V. A. Okulov. A~multidimensional analog of a~theorem due to Zygmund. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[2] Zygmund A., “O module ciaglosci sumy szeregu sprzezonego z szeregiem Fouriera”, Prace Mat.-Fiz., 33 (1924), 125–132

[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl

[4] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl

[5] Pandzhikidze L. K., “Skhodimost kratnykh sopryazhennykh trigonometricheskikh ryadov v prostranstve $C(\mathbb R_n)$ i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 132:3 (1988), 481–483 | MR | Zbl

[6] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl

[7] Nikolskii S. M., “Ryady Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52 (1946), 191–194 | MR