Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_5_a8, author = {V. A. Okulov}, title = {A~multidimensional analog of a~theorem due to {Zygmund}}, journal = {Matemati\v{c}eskie zametki}, pages = {717--727}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/} }
V. A. Okulov. A~multidimensional analog of a~theorem due to Zygmund. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[2] Zygmund A., “O module ciaglosci sumy szeregu sprzezonego z szeregiem Fouriera”, Prace Mat.-Fiz., 33 (1924), 125–132
[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, URSS, M., 1956, 483–522 | MR | Zbl
[4] Okulov V. A., “Mnogomernyi analog odnoi teoremy Privalova”, Matem. sb., 186:2 (1995), 93–104 | MR | Zbl
[5] Pandzhikidze L. K., “Skhodimost kratnykh sopryazhennykh trigonometricheskikh ryadov v prostranstve $C(\mathbb R_n)$ i nepreryvnost sopryazhennykh funktsii mnogikh peremennykh”, Soobsch. AN GSSR, 132:3 (1988), 481–483 | MR | Zbl
[6] Lekishvili M. M., “O sopryazhennykh funktsiyakh mnogikh peremennykh v klasse $\operatorname{Lip}\alpha$”, Matem. zametki, 23:3 (1978), 361–372 | MR | Zbl
[7] Nikolskii S. M., “Ryady Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52 (1946), 191–194 | MR