A~multidimensional analog of a~theorem due to Zygmund
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727

Voir la notice de l'article provenant de la source Math-Net.Ru

Zygmund proved an inequality describing the dependence of the modulus of continuity of the adjoint function on that of the original function lying in the space of $2\pi$-periodic continuous functions. The present article contains estimates of partial moduli of continuity of the adjoint function of several variables in the space $C$. Examples show that these estimates are sharp.
@article{MZM_1997_61_5_a8,
     author = {V. A. Okulov},
     title = {A~multidimensional analog of a~theorem due to {Zygmund}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--727},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/}
}
TY  - JOUR
AU  - V. A. Okulov
TI  - A~multidimensional analog of a~theorem due to Zygmund
JO  - Matematičeskie zametki
PY  - 1997
SP  - 717
EP  - 727
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
LA  - ru
ID  - MZM_1997_61_5_a8
ER  - 
%0 Journal Article
%A V. A. Okulov
%T A~multidimensional analog of a~theorem due to Zygmund
%J Matematičeskie zametki
%D 1997
%P 717-727
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/
%G ru
%F MZM_1997_61_5_a8
V. A. Okulov. A~multidimensional analog of a~theorem due to Zygmund. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 717-727. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a8/