On simultaneous Diophantine approximations. Vectors of given Diophantine type
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 706-716
Voir la notice de l'article provenant de la source Math-Net.Ru
For any monotone function $\psi(y)=O(y^{-1/s})$, we prove the existence of a continual family of vectors $(\alpha_1,\dots,\alpha_s)\in\mathbb R^s$ admitting infinitely many simultaneous $\psi$-approximations, but no $c\psi$-approximations with some constant $c>0$.
@article{MZM_1997_61_5_a7,
author = {N. G. Moshchevitin},
title = {On simultaneous {Diophantine} approximations. {Vectors} of given {Diophantine} type},
journal = {Matemati\v{c}eskie zametki},
pages = {706--716},
publisher = {mathdoc},
volume = {61},
number = {5},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a7/}
}
N. G. Moshchevitin. On simultaneous Diophantine approximations. Vectors of given Diophantine type. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 706-716. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a7/