The cauchy problem for a~nonlinear integro-differential transport equation
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 677-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the Cauchy problem for a nonlinear time-dependent kinetic neutrino transport equation. We prove the existence and uniqueness theorem for the solution of the Cauchy problem, establish uniform bounds in $t$ for the solution of this problem, and prove the existence and uniqueness of a stationary trajectory and the stabilization as $t\to\infty$ of the solution of the time-dependent problem for arbitrary initial data.
@article{MZM_1997_61_5_a4,
     author = {A. V. Kalinin and S. F. Morozov},
     title = {The cauchy problem for a~nonlinear integro-differential transport equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--686},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/}
}
TY  - JOUR
AU  - A. V. Kalinin
AU  - S. F. Morozov
TI  - The cauchy problem for a~nonlinear integro-differential transport equation
JO  - Matematičeskie zametki
PY  - 1997
SP  - 677
EP  - 686
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/
LA  - ru
ID  - MZM_1997_61_5_a4
ER  - 
%0 Journal Article
%A A. V. Kalinin
%A S. F. Morozov
%T The cauchy problem for a~nonlinear integro-differential transport equation
%J Matematičeskie zametki
%D 1997
%P 677-686
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/
%G ru
%F MZM_1997_61_5_a4
A. V. Kalinin; S. F. Morozov. The cauchy problem for a~nonlinear integro-differential transport equation. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/

[1] Suslin V. M., Khlopov M. Yu., Chechetkin V. M., Chuyanov V. A., Funktsii raspredeleniya neitrino v vyrozhdennom veschestve kollapsiruyuschikh yader zvezd, Preprint IPM No 39, M., 1982

[2] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 61, Nauka, M., 1961, 3–158

[3] Kantorovich L. V., Akimov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl

[4] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[5] Birkgof G., Teoriya reshetok, Mir, M., 1984

[6] Tarski A. A., “A lattice-theoretical fixpoint theorem and its applications”, Pacif. J. Math., 5:2 (1955), 285–309 | MR | Zbl