The cauchy problem for a nonlinear integro-differential transport equation
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 677-686
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we study the Cauchy problem for a nonlinear time-dependent kinetic neutrino transport equation. We prove the existence and uniqueness theorem for the solution of the Cauchy problem, establish uniform bounds in $t$ for the solution of this problem, and prove the existence and uniqueness of a stationary trajectory and the stabilization as $t\to\infty$ of the solution of the time-dependent problem for arbitrary initial data.
@article{MZM_1997_61_5_a4,
author = {A. V. Kalinin and S. F. Morozov},
title = {The cauchy problem for a~nonlinear integro-differential transport equation},
journal = {Matemati\v{c}eskie zametki},
pages = {677--686},
year = {1997},
volume = {61},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/}
}
A. V. Kalinin; S. F. Morozov. The cauchy problem for a nonlinear integro-differential transport equation. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a4/
[1] Suslin V. M., Khlopov M. Yu., Chechetkin V. M., Chuyanov V. A., Funktsii raspredeleniya neitrino v vyrozhdennom veschestve kollapsiruyuschikh yader zvezd, Preprint IPM No 39, M., 1982
[2] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 61, Nauka, M., 1961, 3–158
[3] Kantorovich L. V., Akimov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl
[4] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962
[5] Birkgof G., Teoriya reshetok, Mir, M., 1984
[6] Tarski A. A., “A lattice-theoretical fixpoint theorem and its applications”, Pacif. J. Math., 5:2 (1955), 285–309 | MR | Zbl