Complexity of convex stereohedra
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1997_61_5_a18,
     author = {A. S. Tarasov},
     title = {Complexity of convex stereohedra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a18/}
}
TY  - JOUR
AU  - A. S. Tarasov
TI  - Complexity of convex stereohedra
JO  - Matematičeskie zametki
PY  - 1997
SP  - 797
EP  - 800
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a18/
LA  - ru
ID  - MZM_1997_61_5_a18
ER  - 
%0 Journal Article
%A A. S. Tarasov
%T Complexity of convex stereohedra
%J Matematičeskie zametki
%D 1997
%P 797-800
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a18/
%G ru
%F MZM_1997_61_5_a18
A. S. Tarasov. Complexity of convex stereohedra. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a18/

[1] Delone B. N., Sandakova N. N., Tr. MIAN, 64, 1961, 28–51 | MR | Zbl

[2] Shtogrin M. I., Pravilnye razbieniya Dirikhle–Voronogo dlya vtoroi triklinnoi gruppy, Tr. MIAN, 123, Nauka, M., 1973 | MR | Zbl

[3] Dolbilin N., Dress A., Huson D., “Two finiteness theorems for periodic tilings of $d$-dimensional Euclidean space”, Discrete Comput. Geom., 20:2 (1998), 143–153 | DOI | MR | Zbl

[4] Schoenflies A., Kristallsysteme und Kristallstruktur, Leipzig, 1891

[5] Bieberbach Z., Math. Ann., 70 (1911), 297–336 | DOI | MR | Zbl

[6] Engel P., Geometric Crystallography, Dordrecht, 1986

[7] Tarasov A., “A new upperbound for the number of $(d-1)$-faces of a convex $d$-stereohedron”, Abstracts of the 3rd Geometry Festival, Budapest, 1996, 17

[8] Kassels D., Vvedenie v geometriyu chisel, Mir, M., 1969

[9] McMullen P., Math. Proc. Cambridge Philos. Soc., 91 (1982), 91–97 | DOI | MR | Zbl