Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_5_a14, author = {V. V. Filippov}, title = {Existence of periodic solutions}, journal = {Matemati\v{c}eskie zametki}, pages = {769--784}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a14/} }
V. V. Filippov. Existence of periodic solutions. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 769-784. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a14/
[1] Bielawski R., Górniewicz L., Plaskacz S., “Topological approach to differential inclusions on closed subsets of $\mathbb R^n$”, Dynam. Report. (N. S.), 1 (1992), 225–250 | MR | Zbl
[2] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 48:1 (1993), 103–154 | MR | Zbl
[3] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl
[4] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | Zbl
[5] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 185:11 (1994), 95–118
[6] Filippov V. V., “O semeistvakh zamen peremennykh i teoreme edinstvennosti dlya obyknovennykh differentsialnykh uravnenii”, Dokl. RAN, 330:6 (1993), 704–706 | Zbl
[7] Engelking R., Obschaya topologiya, Mir, M., 1986
[8] Górniewicz L., “Topological approach to differential inclusions”, Topological methods in differential equations and inclusions, NATO-ASI, Ser. C: Math. and Phys. Sci., 472, Kluwer Acad. Publ., 1995, 129–190 | MR | Zbl
[9] Frigon M., “Théorèmes d'existence de solutions d'inclusions différentielles”, Topological methods in differential equations and inclusions, NATO-ASI, Ser. C: Math. and Phys. Sci., 472, Kluwer Acad. Publ., 1995, 51–88 | MR
[10] Górniewicz L., “On the solution sets of differential inclusions”, J. Math. Anal. Appl., 113:1 (1986), 235–244 | DOI | MR | Zbl