Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_5_a11, author = {V. N. Sushch}, title = {Gauge-invariant discrete models of {Yang--Mills} equations}, journal = {Matemati\v{c}eskie zametki}, pages = {742--754}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/} }
V. N. Sushch. Gauge-invariant discrete models of Yang--Mills equations. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 742-754. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/
[1] Dezin A. A., Mnogomernyi analiz i diskretnye modeli, Nauka, M., 1990 | Zbl
[2] Dezin A. A., “Modeli, porozhdaemye uravneniyami Yanga–Millsa”, Differents. uravneniya, 29:5 (1993), 846–851 | MR | Zbl
[3] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988
[4] Nash C., Sen S., Topology and geometry for physicists, Acad. Press, London, 1989
[5] Susch V. N., “Diskretnyi analog integrala Koshi”, Differents. uravneniya, 29:8 (1993), 1433–1441 | MR | Zbl
[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979