Gauge-invariant discrete models of Yang--Mills equations
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 742-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two discrete models of Yang–Mill equations are constructed in the space $\mathbb R^n$ for some matrix-valued Lie group. A gauge-invariant discrete model is examined.
@article{MZM_1997_61_5_a11,
     author = {V. N. Sushch},
     title = {Gauge-invariant discrete models of {Yang--Mills} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {742--754},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/}
}
TY  - JOUR
AU  - V. N. Sushch
TI  - Gauge-invariant discrete models of Yang--Mills equations
JO  - Matematičeskie zametki
PY  - 1997
SP  - 742
EP  - 754
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/
LA  - ru
ID  - MZM_1997_61_5_a11
ER  - 
%0 Journal Article
%A V. N. Sushch
%T Gauge-invariant discrete models of Yang--Mills equations
%J Matematičeskie zametki
%D 1997
%P 742-754
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/
%G ru
%F MZM_1997_61_5_a11
V. N. Sushch. Gauge-invariant discrete models of Yang--Mills equations. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 742-754. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/

[1] Dezin A. A., Mnogomernyi analiz i diskretnye modeli, Nauka, M., 1990 | Zbl

[2] Dezin A. A., “Modeli, porozhdaemye uravneniyami Yanga–Millsa”, Differents. uravneniya, 29:5 (1993), 846–851 | MR | Zbl

[3] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988

[4] Nash C., Sen S., Topology and geometry for physicists, Acad. Press, London, 1989

[5] Susch V. N., “Diskretnyi analog integrala Koshi”, Differents. uravneniya, 29:8 (1993), 1433–1441 | MR | Zbl

[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979