Gauge-invariant discrete models of Yang–Mills equations
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 742-754
Cet article a éte moissonné depuis la source Math-Net.Ru
Two discrete models of Yang–Mill equations are constructed in the space $\mathbb R^n$ for some matrix-valued Lie group. A gauge-invariant discrete model is examined.
@article{MZM_1997_61_5_a11,
author = {V. N. Sushch},
title = {Gauge-invariant discrete models of {Yang{\textendash}Mills} equations},
journal = {Matemati\v{c}eskie zametki},
pages = {742--754},
year = {1997},
volume = {61},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/}
}
V. N. Sushch. Gauge-invariant discrete models of Yang–Mills equations. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 742-754. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a11/
[1] Dezin A. A., Mnogomernyi analiz i diskretnye modeli, Nauka, M., 1990 | Zbl
[2] Dezin A. A., “Modeli, porozhdaemye uravneniyami Yanga–Millsa”, Differents. uravneniya, 29:5 (1993), 846–851 | MR | Zbl
[3] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988
[4] Nash C., Sen S., Topology and geometry for physicists, Acad. Press, London, 1989
[5] Susch V. N., “Diskretnyi analog integrala Koshi”, Differents. uravneniya, 29:8 (1993), 1433–1441 | MR | Zbl
[6] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979