Invariant cubature formulas for the hyperoctahedron
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 734-741.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cubature formulas for calculating integrals over the hyperoctahedron that are invariant under the group of all of its orthogonal transformations are obtained. Two of them are exact for all polynomials of degree no greater than seven and one is exact for all polynomials of degree no greater than five.
@article{MZM_1997_61_5_a10,
     author = {S. B. Stoyanova},
     title = {Invariant cubature formulas for the hyperoctahedron},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--741},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a10/}
}
TY  - JOUR
AU  - S. B. Stoyanova
TI  - Invariant cubature formulas for the hyperoctahedron
JO  - Matematičeskie zametki
PY  - 1997
SP  - 734
EP  - 741
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a10/
LA  - ru
ID  - MZM_1997_61_5_a10
ER  - 
%0 Journal Article
%A S. B. Stoyanova
%T Invariant cubature formulas for the hyperoctahedron
%J Matematičeskie zametki
%D 1997
%P 734-741
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a10/
%G ru
%F MZM_1997_61_5_a10
S. B. Stoyanova. Invariant cubature formulas for the hyperoctahedron. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 734-741. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a10/

[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | Zbl

[2] Stroud A. H., Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, New Jersey, 1971 | Zbl

[3] Sobolev S. L., “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sib. matem. zh., 3:4 (1962), 769–796 | MR | Zbl