Closed sectorial forms and one-parameter contraction semigroups
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 643-654
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $s[u,v]$ is a closed sesquilinear sectorial form with vertex at zero, half-angle$\alpha\in[0,\pi/2)$, and dense domain $\mathscr D(s)$ in a Hilbert space $H$, $S$ is them-sectorial operator associated with $s$, $S_R$ is the real part of $S$, and $T(t)=\exp(-tS)$ is the contraction semigroup with generator $-S$, holomorphic in the sector $|\arg t|\pi/2-\alpha$. We characterizes in terms of $T(t)$. In particular, we prove that the following conditions: 1) $u\in\mathscr D(s)$; 2) the function $\|T(t)u\|$ is differentiable at zero; 3) the function $\bigl(T(t)u,u\bigr)$ is differentiable at zero.
@article{MZM_1997_61_5_a0,
author = {Yu. M. Arlinskii},
title = {Closed sectorial forms and one-parameter contraction semigroups},
journal = {Matemati\v{c}eskie zametki},
pages = {643--654},
publisher = {mathdoc},
volume = {61},
number = {5},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a0/}
}
Yu. M. Arlinskii. Closed sectorial forms and one-parameter contraction semigroups. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 643-654. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a0/