Convergence of multiple Fourier series for functions of bounded variation
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 583-595
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions of bounded variation in the sense of Hardy, we consider the pointwise convergence of the partial sums of Fourier series over a given sequence of bounded sets in the space of harmonics. We obtain sufficient conditions for convergence; necessary and sufficient conditions are obtained for the case in which these sets are convex with respect to each coordinate direction. The Pringsheim convergence of Fourier series in this problem was established by Hardy.
@article{MZM_1997_61_4_a9,
author = {S. A. Telyakovskii and V. N. Temlyakov},
title = {Convergence of multiple {Fourier} series for functions of bounded variation},
journal = {Matemati\v{c}eskie zametki},
pages = {583--595},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/}
}
TY - JOUR AU - S. A. Telyakovskii AU - V. N. Temlyakov TI - Convergence of multiple Fourier series for functions of bounded variation JO - Matematičeskie zametki PY - 1997 SP - 583 EP - 595 VL - 61 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/ LA - ru ID - MZM_1997_61_4_a9 ER -
S. A. Telyakovskii; V. N. Temlyakov. Convergence of multiple Fourier series for functions of bounded variation. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 583-595. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/