Convergence of multiple Fourier series for functions of bounded variation
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 583-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions of bounded variation in the sense of Hardy, we consider the pointwise convergence of the partial sums of Fourier series over a given sequence of bounded sets in the space of harmonics. We obtain sufficient conditions for convergence; necessary and sufficient conditions are obtained for the case in which these sets are convex with respect to each coordinate direction. The Pringsheim convergence of Fourier series in this problem was established by Hardy.
@article{MZM_1997_61_4_a9,
     author = {S. A. Telyakovskii and V. N. Temlyakov},
     title = {Convergence of multiple {Fourier} series for functions of bounded variation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {583--595},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
AU  - V. N. Temlyakov
TI  - Convergence of multiple Fourier series for functions of bounded variation
JO  - Matematičeskie zametki
PY  - 1997
SP  - 583
EP  - 595
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/
LA  - ru
ID  - MZM_1997_61_4_a9
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%A V. N. Temlyakov
%T Convergence of multiple Fourier series for functions of bounded variation
%J Matematičeskie zametki
%D 1997
%P 583-595
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/
%G ru
%F MZM_1997_61_4_a9
S. A. Telyakovskii; V. N. Temlyakov. Convergence of multiple Fourier series for functions of bounded variation. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 583-595. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a9/

[1] Hardy G. H., “On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters”, Quart. J. Math., 37 (1906), 53–70

[2] Morse M., Transue W., “The Fréchet variation and a generalization for multiple Fourier series of the Jordan test”, Rev. Mat. Univ. Parma, 1 (1950), 3–18 | MR | Zbl

[3] Chandrasekharan K., Minakshisundaram S., “Some results on double Fourier series”, Duke Math. J., 14 (1947), 731–753 | DOI | MR | Zbl

[4] Temlyakov V. N., “O povedenii chastnykh summ po giperbolicheskim krestam ryadov Fure periodicheskikh funktsii mnogikh peremennykh”, Tr. MIAN, 192, Nauka, M., 1990, 197–206 | MR

[5] Telyakovskii S. A., “Ob otsenkakh proizvodnykh trigonometricheskikh polinomov mnogikh peremennykh”, Sib. matem. zh., 4 (1963), 1404–1411

[6] Dyachenko M. I., “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, UMN, 47:5 (1992), 96–162 | MR

[7] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | Zbl

[8] Telyakovskii S. A., “Ravnomernaya ogranichennost nekotorykh trigonometricheskikh polinomov mnogikh peremennykh”, Matem. zametki, 42 (1987), 33–39 | MR | Zbl