Filtrations in hyperhomology
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 578-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

For typical complexes, hyperhomology and its two natural filtrations are given an intrinsic description independent of the hyperhomology apparatus.
@article{MZM_1997_61_4_a8,
     author = {E. G. Sklyarenko},
     title = {Filtrations in hyperhomology},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--582},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Filtrations in hyperhomology
JO  - Matematičeskie zametki
PY  - 1997
SP  - 578
EP  - 582
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/
LA  - ru
ID  - MZM_1997_61_4_a8
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Filtrations in hyperhomology
%J Matematičeskie zametki
%D 1997
%P 578-582
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/
%G ru
%F MZM_1997_61_4_a8
E. G. Sklyarenko. Filtrations in hyperhomology. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 578-582. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/

[1] Cartan H., Eilenberg S., Homological algebra, Princeton Univ. Press, Princeton, 1956 | Zbl

[2] Bredon G. E., Sheaf theory, McGraw-Hill, New York, 1967 | Zbl

[3] Godement R., Topologie algébraique et théorie des faiseaux, Hermann, Paris, 1958 | Zbl

[4] Jensen C. U., Les foncteurs dérivés de $\varprojlim$ et leurs applications en théorie des modules, Lect. Notes in Math., 254, 1972 | Zbl

[5] Sklyarenko E. G., “O prirode gomologicheskikh umnozhenii i dvoistvennosti”, UMN, 49:1 (1994), 141–198 | MR | Zbl

[6] Eilenberg S., Steenrod N., Foundation of algebraic topology, Princeton Univ. Press, Princeton, New Jersey, 1952 | Zbl

[7] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961 | MR

[8] Sklyarenko E. G., “O filtratsii Zimana v gomologiyakh”, Matem. sb., 183:12 (1992), 103–116 | Zbl

[9] Roos J. E., “Sur les foncteurs dérivés de $\varprojlim$. Applications”, C. R. Acad. Sci. Paris, 252 (1961), 3702–3704 | MR | Zbl

[10] Sklyarenko E. G., “Giper(ko)gomologii dlya tochnykh sleva kovariantnykh funktorov i teoriya gomologii topologicheskikh prostranstv”, UMN, 50:3 (1995), 109–146 | MR | Zbl

[11] Zeeman E. C., “Dihomology. III: A generalization of the Poincaré duality for manifolds”, Proc. London Math. Soc., 13:49 (1963), 119–183 | MR