Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_4_a8, author = {E. G. Sklyarenko}, title = {Filtrations in hyperhomology}, journal = {Matemati\v{c}eskie zametki}, pages = {578--582}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/} }
E. G. Sklyarenko. Filtrations in hyperhomology. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 578-582. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a8/
[1] Cartan H., Eilenberg S., Homological algebra, Princeton Univ. Press, Princeton, 1956 | Zbl
[2] Bredon G. E., Sheaf theory, McGraw-Hill, New York, 1967 | Zbl
[3] Godement R., Topologie algébraique et théorie des faiseaux, Hermann, Paris, 1958 | Zbl
[4] Jensen C. U., Les foncteurs dérivés de $\varprojlim$ et leurs applications en théorie des modules, Lect. Notes in Math., 254, 1972 | Zbl
[5] Sklyarenko E. G., “O prirode gomologicheskikh umnozhenii i dvoistvennosti”, UMN, 49:1 (1994), 141–198 | MR | Zbl
[6] Eilenberg S., Steenrod N., Foundation of algebraic topology, Princeton Univ. Press, Princeton, New Jersey, 1952 | Zbl
[7] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961 | MR
[8] Sklyarenko E. G., “O filtratsii Zimana v gomologiyakh”, Matem. sb., 183:12 (1992), 103–116 | Zbl
[9] Roos J. E., “Sur les foncteurs dérivés de $\varprojlim$. Applications”, C. R. Acad. Sci. Paris, 252 (1961), 3702–3704 | MR | Zbl
[10] Sklyarenko E. G., “Giper(ko)gomologii dlya tochnykh sleva kovariantnykh funktorov i teoriya gomologii topologicheskikh prostranstv”, UMN, 50:3 (1995), 109–146 | MR | Zbl
[11] Zeeman E. C., “Dihomology. III: A generalization of the Poincaré duality for manifolds”, Proc. London Math. Soc., 13:49 (1963), 119–183 | MR