Recurrence of the integral of an odd conditionally periodic function
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 570-577
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the integral of a sufficiently smooth odd conditionally periodic function with zero mean and incommensurable frequencies recurs. Furthermore, we obtain the lower and upper bounds for smoothness guaranteeing the recurrence of the integral.
@article{MZM_1997_61_4_a7,
author = {S. V. Konyagin},
title = {Recurrence of the integral of an odd conditionally periodic function},
journal = {Matemati\v{c}eskie zametki},
pages = {570--577},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/}
}
S. V. Konyagin. Recurrence of the integral of an odd conditionally periodic function. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 570-577. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/