Recurrence of the integral of an odd conditionally periodic function
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 570-577

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the integral of a sufficiently smooth odd conditionally periodic function with zero mean and incommensurable frequencies recurs. Furthermore, we obtain the lower and upper bounds for smoothness guaranteeing the recurrence of the integral.
@article{MZM_1997_61_4_a7,
     author = {S. V. Konyagin},
     title = {Recurrence of the integral of an odd conditionally periodic function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {570--577},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Recurrence of the integral of an odd conditionally periodic function
JO  - Matematičeskie zametki
PY  - 1997
SP  - 570
EP  - 577
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/
LA  - ru
ID  - MZM_1997_61_4_a7
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Recurrence of the integral of an odd conditionally periodic function
%J Matematičeskie zametki
%D 1997
%P 570-577
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/
%G ru
%F MZM_1997_61_4_a7
S. V. Konyagin. Recurrence of the integral of an odd conditionally periodic function. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 570-577. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a7/