The Mathieu--Hill operator equation with dissipation and estimates of its instability index
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 543-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior as $t\to\infty$ of solutions of the equation $$ \partial^2_tu+\gamma\partial_tu+Au+f(t)u=0 $$ in a Hilbert space is studied, where $A=A^*$ is a positive definite operator with compact inverse and the operator $f$ is periodic in $t$. The notion of instability index is introduced for this equation; we prove that the instability index is finite under natural assumptions ($f$ must be dominated by $A$). Asymptotic estimates of the instability index are obtained as $\gamma\to0$, and an example is constructed showing that they cannot be improved. Furthermore, we study the qualitative characteristics of the spectrum of the monodromy operator and the existence of the Floquet representation for this problem.
@article{MZM_1997_61_4_a5,
     author = {S. V. Zelik},
     title = {The {Mathieu--Hill} operator equation with dissipation and estimates of its instability index},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--560},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/}
}
TY  - JOUR
AU  - S. V. Zelik
TI  - The Mathieu--Hill operator equation with dissipation and estimates of its instability index
JO  - Matematičeskie zametki
PY  - 1997
SP  - 543
EP  - 560
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/
LA  - ru
ID  - MZM_1997_61_4_a5
ER  - 
%0 Journal Article
%A S. V. Zelik
%T The Mathieu--Hill operator equation with dissipation and estimates of its instability index
%J Matematičeskie zametki
%D 1997
%P 543-560
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/
%G ru
%F MZM_1997_61_4_a5
S. V. Zelik. The Mathieu--Hill operator equation with dissipation and estimates of its instability index. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 543-560. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/

[1] Bolotin V. V., Dinamicheskaya ustoichivost uprugikh sistem, GITTL, M., 1956

[2] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | Zbl

[3] Fomin V. N., “Parametricheskii rezonans uprugikh sistem s beskonechnym chislom stepenei svobody, I”, Vestn. LGU. Matem., mekh., astron., 13:3 (1965), 73–87 | Zbl

[4] Fomin V. N., “Parametricheskii rezonans uprugikh sistem s beskonechnym chislom stepenei svobody, II”, Vestn. LGU. Matem., mekh., astron., 19:4 (1965), 74–86 | Zbl

[5] Derguzov V. I., “Ob ustoichivosti reshenii gamiltonovykh uravnenii v gilbertovom prostranstve s neogranichennymi periodicheskimi koeffitsientami”, Dokl. AN SSSR, 152:6 (1963), 1294–1296 | MR | Zbl

[6] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972

[7] Babin A. V., Vishik M. I., “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, UMN, 38:4 (1983), 133–187 | MR | Zbl

[8] Ghidalgia J. M., Temam R., “Attractors for damped nonlinear hyperbolic equations”, J. Math. Pures Appl., 66:3 (1987), 273–319 | MR

[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[10] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, T. 1, IL, M., 1962

[11] Klement F., Kheimans Kh., Odnoparametricheskie polugruppy, Mir, M., 1992

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[13] Yakubovich V. A., Starzhinskii V. M., Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987

[14] Schaffer J. J., “On Floquet's Theorem in Hilbert spaces”, Bull. Amer. Math. Soc., 70 (1964), 243–245 | DOI | MR

[15] Massera Kh., Sheffer Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970 | Zbl

[16] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982