The Mathieu--Hill operator equation with dissipation and estimates of its instability index
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 543-560

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior as $t\to\infty$ of solutions of the equation $$ \partial^2_tu+\gamma\partial_tu+Au+f(t)u=0 $$ in a Hilbert space is studied, where $A=A^*$ is a positive definite operator with compact inverse and the operator $f$ is periodic in $t$. The notion of instability index is introduced for this equation; we prove that the instability index is finite under natural assumptions ($f$ must be dominated by $A$). Asymptotic estimates of the instability index are obtained as $\gamma\to0$, and an example is constructed showing that they cannot be improved. Furthermore, we study the qualitative characteristics of the spectrum of the monodromy operator and the existence of the Floquet representation for this problem.
@article{MZM_1997_61_4_a5,
     author = {S. V. Zelik},
     title = {The {Mathieu--Hill} operator equation with dissipation and estimates of its instability index},
     journal = {Matemati\v{c}eskie zametki},
     pages = {543--560},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/}
}
TY  - JOUR
AU  - S. V. Zelik
TI  - The Mathieu--Hill operator equation with dissipation and estimates of its instability index
JO  - Matematičeskie zametki
PY  - 1997
SP  - 543
EP  - 560
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/
LA  - ru
ID  - MZM_1997_61_4_a5
ER  - 
%0 Journal Article
%A S. V. Zelik
%T The Mathieu--Hill operator equation with dissipation and estimates of its instability index
%J Matematičeskie zametki
%D 1997
%P 543-560
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/
%G ru
%F MZM_1997_61_4_a5
S. V. Zelik. The Mathieu--Hill operator equation with dissipation and estimates of its instability index. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 543-560. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a5/