Subdifferentiability and superdifferentiability of distance functions
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 530-542

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the subdifferentiability and superdifferentiability (in the Dem'yanov–Rubinov sense) of the distance in an arbitrary norm from a point to a set for the finitedimensional case. The geometric structure of the subdifferential and the superdifferential is described.
@article{MZM_1997_61_4_a4,
     author = {S. I. Dudov},
     title = {Subdifferentiability and superdifferentiability of distance functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {530--542},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a4/}
}
TY  - JOUR
AU  - S. I. Dudov
TI  - Subdifferentiability and superdifferentiability of distance functions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 530
EP  - 542
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a4/
LA  - ru
ID  - MZM_1997_61_4_a4
ER  - 
%0 Journal Article
%A S. I. Dudov
%T Subdifferentiability and superdifferentiability of distance functions
%J Matematičeskie zametki
%D 1997
%P 530-542
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a4/
%G ru
%F MZM_1997_61_4_a4
S. I. Dudov. Subdifferentiability and superdifferentiability of distance functions. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 530-542. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a4/