Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 519-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a functional on the class $H_\omega^{(n)}$, $n\ge3$, we construct the extremal function on which the upper bound obtained by A. I. Stepanets is attained.
@article{MZM_1997_61_4_a3,
     author = {D. V. Gorbachev},
     title = {Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--529},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 519
EP  - 529
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/
LA  - ru
ID  - MZM_1997_61_4_a3
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$
%J Matematičeskie zametki
%D 1997
%P 519-529
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/
%G ru
%F MZM_1997_61_4_a3
D. V. Gorbachev. Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 519-529. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/

[1] Stepanets A. I., Ravnomernye priblizheniya trigonometricheskimi polinomami, Naukova dumka, Kiev, 1981

[2] Korneichuk N. P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976

[3] Stepanets A. I., “Ob odnoi ekstremalnoi zadache v prostranstve nepreryvnykh funktsii dvukh peremennykh”, Voprosy teorii priblizhenii funktsii i ee prilozhenii, IMAN USSR, Kiev, 1976, 160–178