Construction of the extremal function for a functional on the class $H_\omega^{(n)}$
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 519-529
Cet article a éte moissonné depuis la source Math-Net.Ru
For a functional on the class $H_\omega^{(n)}$, $n\ge3$, we construct the extremal function on which the upper bound obtained by A. I. Stepanets is attained.
@article{MZM_1997_61_4_a3,
author = {D. V. Gorbachev},
title = {Construction of the extremal function for a~functional on the class $H_\omega^{(n)}$},
journal = {Matemati\v{c}eskie zametki},
pages = {519--529},
year = {1997},
volume = {61},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/}
}
D. V. Gorbachev. Construction of the extremal function for a functional on the class $H_\omega^{(n)}$. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 519-529. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a3/
[1] Stepanets A. I., Ravnomernye priblizheniya trigonometricheskimi polinomami, Naukova dumka, Kiev, 1981
[2] Korneichuk N. P., Ekstremalnye zadachi teorii priblizhenii, Nauka, M., 1976
[3] Stepanets A. I., “Ob odnoi ekstremalnoi zadache v prostranstve nepreryvnykh funktsii dvukh peremennykh”, Voprosy teorii priblizhenii funktsii i ee prilozhenii, IMAN USSR, Kiev, 1976, 160–178