Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_4_a2, author = {P. Gibilisco}, title = {Bundle-connection pairs and loop group representations}, journal = {Matemati\v{c}eskie zametki}, pages = {503--518}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/} }
P. Gibilisco. Bundle-connection pairs and loop group representations. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/
[1] Ambrose W., Singer I. M., “A theorem on holonomy”, Trans. Amer. Math. Soc., 75 (1953), 428–443 | DOI | MR | Zbl
[2] Michor P. W., Gauge theory for fiber bundles, Bibliopolis, Napoli, 1991 | Zbl
[3] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de Topologie, Bruxelles, 1950, 29–55
[4] Milnor J., “On the existence of a connection with curvature zero”, Comment. Math. Helv., 32 (1958), 215–223 | DOI | MR | Zbl
[5] Kobayashi S., Differential geometry of a complex vector bundle, Iwanami shoten Publishers; Princeton, Princeton Univ. Press, 1987 | Zbl
[6] Lumiste Ü. G., “Connection theory in bundle space”, J. Soviet Math., 1 (1973), 363–390 | DOI | MR | Zbl
[7] Lumiste Ü. G., “Connection on a fiber bundle”, Encyclopaedia of Mathematics, V. 2, Kluwer Acad. Publ., Dordrecht–Boston–London, 1988, 341–343
[8] Kobayashi S., “La connexion des variétés fibrées, II”, C. R. Acad. Sci. Paris, 238 (1954), 443–444 | MR | Zbl
[9] Telemann C., “Généralisation du groupe fondamental d'un espace topologique”, C. R. Acad. Sci. Paris, 248 (1959), 2845–2846 | MR
[10] Telemann C., “Généralisation du groupe fondamental d'une variété différentiable”, C. R. Acad. Sci. Paris, 248 (1959), 2930–2932 | MR
[11] Telemann C., “Généralisation du groupe fondamental”, Ann. Sci. École Norm. Sup., 77:3 (1960), 195–234 | MR
[12] Telemann C., “Sur la classification des espaces fibrés”, C. R. Acad. Sci. Paris, 253 (1961), 935–936 | MR
[13] Telemann C., “Sur les connexions infinitésimales qu'on peut définir dans les structures fibrées différentiables de base donnée”, Ann. Mat. Pura Appl., 62 (1963), 379–412 | MR
[14] Telemann C., “Sur une théorie générale des connexions”, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 10:1–2 (1966), 179–199 | MR
[15] Driver B. K., “Classification of bundle connection pairs by parallel translation and lassos”, J. Funct. Anal., 83 (1989), 185–231 | DOI | MR | Zbl
[16] Lashof R., “Classification of fiber bundles by the loop space of the base”, Ann. Math., 64:3 (1956), 436–513 | DOI | MR
[17] Kostant B., “Quantization and unitary representations; Prequantization, I”, Lecture in modern analysis and applications, III, Lect. Notes in Math., 170, Springer, Berlin–Heidelberg–N. Y., 1970 | MR
[18] Giles R., “Reconstruction of gauge potentials from Wilson loops”, Phys. Rev. D, 24 (1981), 2160–2168 | DOI | MR
[19] Wilson K. G., “Confinement of quarks”, Phys. Rev. D, 10 (1974), 2445–2459 | DOI
[20] Fröhlich J., “Some results and comments on quantized gauge fields”, Recent development in gauge theories, eds. G.'t Hooft et al., Plenum, N. Y., 1980
[21] Gross L., “A Poincaré lemma for connection forms”, J. Funct. Anal., 63 (1985), 1–46 | DOI | MR | Zbl
[22] Driver B. K., Loop space, curvature and quasi-invariance, Preprint No 123, Centro Vito Volterra, Università di Roma “Tor Vergata”, Roma, 1992
[23] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rend. Accad. Lincei. Clas. Sci. Fis. Mat. Natur. (9), 4 (1993), 201–206 | DOI
[24] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russian J. Math. Phys., 2 (1994), 235–250 | MR | Zbl
[25] Speranza F., “Sulla nozione di connessione”, Boll. Un. Mat. Ital., 20:3 (1965), 367–378 | MR | Zbl
[26] Menskii M. V., Metod indutsirovannykh predstavlenii: prostranstvo vremya i kontseptsiya elementarnykh chastits, Nauka, M., 1976
[27] Menskii M. V., Gruppa putei: izmereniya, polya, chastitsy, Nauka, M., 1983
[28] Mensky M. V., “The path group and the interaction of quantum strings”, Soviet Phys. JETP, 63:2 (1986)
[29] Accardi L., Gibilisco P., “The Schrödinger representation on Hilbert bundles”, Probabilistic methods in Mathematical Physics, eds. F. Guerra, M. I. Loffredo, C. Marchioro, World Scientific, Singapore, 1992, 1–15
[30] Gibilisco P., Representations of path groups and parallel transports, Ph. D. Thesis, Università degli studi di Roma “Tor Vergata”, Roma, 1992, (Italian)
[31] Gibilisco P., “The imprimitivity theorem for a class of non-locally compact groups”, General Relativity and Gravitational Physics, eds. M. Cerdonio, R. D'Auria, M. Francaviglia, G. Magnano, World Scientific, Singapore, 1994, 491–496 | MR | Zbl
[32] Gibilisko P., “Indutsirovannye predstavleniya nelokalno-kompaktnykh grupp”, Matem. zametki, 57:3 (1995), 350–358 | MR
[33] Steenrod N., The topology of Fiber Bundles, Princeton Univ. Press, Princeton, New Jersey, 1951 | Zbl
[34] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Vol. 1, Interscience, N. Y., 1963
[35] Freed D. S., “The geometry of loop groups”, J. Diff. Geom., 28 (1988), 223–276 | MR | Zbl
[36] Lang S., Differential manifolds, Springer, Berlin–Heidelberg–N. Y., 1985
[37] Eliasson H. I., “Geometry of manifolds of maps”, J. Diff. Geom., 1 (1967), 169–194 | MR | Zbl
[38] Vilms J., “Connections on tangent bundles”, J. Diff. Geom., 1 (1967), 235–243 | MR | Zbl
[39] Klingenberg W., Lecture on closed geodesic, Springer, Berlin–Heidelberg–N. Y., 1978
[40] Klingenberg W., Riemannian geometry, Walter de Gruyter, Berlin–N. Y., 1982 | Zbl
[41] Hamilton R., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl
[42] Milnor J., “Remarks on infinite-dimensional Lie groups”, Relativity, groups and topology, II (Les Houches 1983), eds. B. S. De Witt, R. Stora, North-Holland, Amsterdam, 1984, 1007–1058 | MR
[43] Flaschel P., Klingeberg W., Riemannsche Hilbertmannigfaltigkeiten periodische geödetische, Lect. Notes in Math., 282, Springer, Berlin, 1972 | Zbl
[44] S. S. Chern, S. Smale (eds.), Global analysis, Proc. Sympos. Pure Math., 15, AMS, Providence, 1970
[45] Koschorke U., “Infinite-dimensional K-theory and characteristic classes of Fredholm bundle maps”, Global analysis, Proc. Sympos. Pure Math., 15, eds. S. S. Chern, S. Smale, AMS, Providence, 1970, 95–134 | MR
[46] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Global analysis, Proc. Sympos. Pure Math., 15, eds. S. S. Chern, S. Smale, AMS, Providence, 1970, 45–94 | MR
[47] Kuiper N. H., “The homotopy type of the unitary group of Hilbert spaces”, Topology, 3 (1965), 19–30 | DOI | MR | Zbl
[48] Arlt D., “Zusammenziehbarkeit der allgemeinen linearen Gruppe des Raumes co der Nullfolgen”, Invent. Math., 1 (1966), 36–44 | DOI | MR | Zbl
[49] Neubauer G., On a class of sequences spaces with contractible linear group, Notes, Univ. of California, Berkeley, California, 1967
[50] Douady A., “Un espace de Banach dont le groupe linéaire n'est pas connexe”, Indag. Math., 68 (1965), 787–789 | MR | Zbl