Bundle-connection pairs and loop group representations
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 503-518

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a connected differentiable manifold. Denote by $\Omega_m(M)$ the space of $H^1$-loops based at a fixed point $m\in M$. Associated to $\Omega_m(M)$ one has $\widetilde\Omega_m(M)$, the group of unparameterized loops. Given a bundle-connection pair $(E,\nabla)$ over $M$ with fiber the finite-dimensional vector space $V$ and structure group $G\subset\operatorname{GL}(V)$ we get (up to equivalence) a smooth representation of $\widetilde\Omega _m(M)$ in $G$ given by the parallel transport operator $P^{\nabla}$. It is possible to find in the literature several versions of the converse theorem, namely: all (smooth) representations of $\widetilde\Omega _m(M)$ arise in the above described way from a bundle-connection pair. It is shown in the present paper that the correct setting for this theorem is the theory of induced representations for groupoids.
@article{MZM_1997_61_4_a2,
     author = {P. Gibilisco},
     title = {Bundle-connection pairs and loop group representations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--518},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/}
}
TY  - JOUR
AU  - P. Gibilisco
TI  - Bundle-connection pairs and loop group representations
JO  - Matematičeskie zametki
PY  - 1997
SP  - 503
EP  - 518
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/
LA  - ru
ID  - MZM_1997_61_4_a2
ER  - 
%0 Journal Article
%A P. Gibilisco
%T Bundle-connection pairs and loop group representations
%J Matematičeskie zametki
%D 1997
%P 503-518
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/
%G ru
%F MZM_1997_61_4_a2
P. Gibilisco. Bundle-connection pairs and loop group representations. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 503-518. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a2/