Stable subsets of modules and the existence of a~unit in associative rings
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 596-611.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria for the existence of a (left) unit in rings (arbitrary, Artinian, Noetherian, prime, and so on) that are based on the systematic study of properties of stable subsets of modules and their stabilizers that generalize the technique of idempotents. We study a class of quasiunitary rings that is a natural extension of classes of rings with unit and of von Neumann (weakly) regular rings, which inherits may properties of these classes. Some quasiunitary radicals of arbitrary rings are constructed, and the size of these radicals “measures the probability” of the existence of a unit.
@article{MZM_1997_61_4_a10,
     author = {A. V. Khokhlov},
     title = {Stable subsets of modules and the existence of a~unit in associative rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {596--611},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a10/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Stable subsets of modules and the existence of a~unit in associative rings
JO  - Matematičeskie zametki
PY  - 1997
SP  - 596
EP  - 611
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a10/
LA  - ru
ID  - MZM_1997_61_4_a10
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Stable subsets of modules and the existence of a~unit in associative rings
%J Matematičeskie zametki
%D 1997
%P 596-611
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a10/
%G ru
%F MZM_1997_61_4_a10
A. V. Khokhlov. Stable subsets of modules and the existence of a~unit in associative rings. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 596-611. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a10/

[1] Ramamurthi V. S., “Weakly regular rings”, Canad. Math. Bull., 16:3 (1973), 317–321 | MR | Zbl

[2] Tominaga H., “On $s$-unital rings”, Math. J. Okayama Univ., 18:2 (1976), 117–134 | MR | Zbl

[3] Dzhekobson N., Stroenie kolets, IL, M., 1961

[4] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972

[5] Khokhlov A. V., Koltsa bez edinitsy, rodstvennye kommutativnym (vokrug kommutativnosti, unitarnosti i regulyarnosti kolets)