The equicontinuity condition for sequences of solution spaces
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 416-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

The verification of an appropriately stated equicontinuity condition for a sequence of solution spaces is one of the two key points in the theory of the Cauchy problem for equations with singular right-hand sides. We obtain a related sufficient condition.
@article{MZM_1997_61_3_a9,
     author = {V. V. Filippov},
     title = {The equicontinuity condition for sequences of solution spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {416--423},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a9/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - The equicontinuity condition for sequences of solution spaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 416
EP  - 423
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a9/
LA  - ru
ID  - MZM_1997_61_3_a9
ER  - 
%0 Journal Article
%A V. V. Filippov
%T The equicontinuity condition for sequences of solution spaces
%J Matematičeskie zametki
%D 1997
%P 416-423
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a9/
%G ru
%F MZM_1997_61_3_a9
V. V. Filippov. The equicontinuity condition for sequences of solution spaces. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 416-423. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a9/

[1] Rellich F., Jahresber. Deutsch. Math.-Verein, 53:1 (1943), 57–65 | MR | Zbl

[2] Jäger W., Math. Z., 102:1 (1967), 62–88 | DOI | MR | Zbl

[3] Eidus D. M., UMN, 24:3 (1969), 91–156 | MR

[4] Vogelsang V., J. Reine Angew. Math., 338 (1983), 109–120 | MR | Zbl

[5] Filinovskii A. V., Matem. sb., 187:6 (1996), 131–160 | MR | Zbl

[6] Glazman I. M., Dokl. AN SSSR, 87:2 (1952), 171–174 | MR | Zbl

[7] Glazman I. M., Dokl. AN SSSR, 87:1 (1952), 5–8 | MR | Zbl