Rings over which each module possesses a~maximal submodule
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415
Voir la notice de l'article provenant de la source Math-Net.Ru
Right Bass rings are investigated, that is, rings over which any nonzero right module has a maximal submodule. In particular, it is proved that if any prime quotient ring of a ring $A$ is algebraic over its center, then $A$ is a right perfect ring $\iff$ $A$ is a right Bass ring that contains no infinite set of orthogonal idempotents.
@article{MZM_1997_61_3_a8,
author = {A. A. Tuganbaev},
title = {Rings over which each module possesses a~maximal submodule},
journal = {Matemati\v{c}eskie zametki},
pages = {407--415},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/}
}
A. A. Tuganbaev. Rings over which each module possesses a~maximal submodule. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/