Rings over which each module possesses a~maximal submodule
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415

Voir la notice de l'article provenant de la source Math-Net.Ru

Right Bass rings are investigated, that is, rings over which any nonzero right module has a maximal submodule. In particular, it is proved that if any prime quotient ring of a ring $A$ is algebraic over its center, then $A$ is a right perfect ring $\iff$ $A$ is a right Bass ring that contains no infinite set of orthogonal idempotents.
@article{MZM_1997_61_3_a8,
     author = {A. A. Tuganbaev},
     title = {Rings over which each module possesses a~maximal submodule},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--415},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which each module possesses a~maximal submodule
JO  - Matematičeskie zametki
PY  - 1997
SP  - 407
EP  - 415
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/
LA  - ru
ID  - MZM_1997_61_3_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which each module possesses a~maximal submodule
%J Matematičeskie zametki
%D 1997
%P 407-415
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/
%G ru
%F MZM_1997_61_3_a8
A. A. Tuganbaev. Rings over which each module possesses a~maximal submodule. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/