Rings over which each module possesses a~maximal submodule
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

Right Bass rings are investigated, that is, rings over which any nonzero right module has a maximal submodule. In particular, it is proved that if any prime quotient ring of a ring $A$ is algebraic over its center, then $A$ is a right perfect ring $\iff$ $A$ is a right Bass ring that contains no infinite set of orthogonal idempotents.
@article{MZM_1997_61_3_a8,
     author = {A. A. Tuganbaev},
     title = {Rings over which each module possesses a~maximal submodule},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--415},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which each module possesses a~maximal submodule
JO  - Matematičeskie zametki
PY  - 1997
SP  - 407
EP  - 415
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/
LA  - ru
ID  - MZM_1997_61_3_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which each module possesses a~maximal submodule
%J Matematičeskie zametki
%D 1997
%P 407-415
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/
%G ru
%F MZM_1997_61_3_a8
A. A. Tuganbaev. Rings over which each module possesses a~maximal submodule. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 407-415. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a8/

[1] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Amer. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl

[2] Hamsher R. M., “Commutative rings over which every module has a maximal submodule”, Proc. Amer. Math. Soc., 18:6 (1967), 1133–1137 | DOI | MR | Zbl

[3] Armendariz E. P., Fisher J. V., “Regular PI-rings”, Proc. Amer. Math. Soc., 39:2 (1973), 247–251 | DOI | MR | Zbl

[4] Cozzens J. H., “Homological properties of the of differential polynomials”, Bull. Amer. Math. Soc., 76 (1970), 75–79 | DOI | MR | Zbl

[5] Koifman L. A., “Koltsa, nad kotorymi kazhdyi modul imeet maksimalnyi podmodul”, Matem. zametki, 7:3 (1970), 359–367 | MR | Zbl

[6] Feis K., Algebra: koltsa, moduli i kategorii, T. 2, Mir, M., 1979

[7] Markov V. T., “O $B$-koltsakh s polinomialnym tozhdestvom”, Tr. sem. im. I. G. Petrovskogo, 7, Izd-vo Mosk. un-ta, M., 1981, 232–238 | Zbl

[8] Kash F., Moduli i koltsa, Mir, M., 1981

[9] Goodearl K. R., Von Neumann regular rings, Pitman, London, 1979 | Zbl

[10] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979

[11] Beidar K. I., Mikhalev A. V., “Polupervichnye koltsa s ogranichennymi indeksami nilpotentnykh elementov”, Tr. seminara im. I. G. Petrovskogo, 13 (1988), 237–249

[12] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972

[13] Fisher J. V., Snider R. L., “On the Von Neumann regularity of rings with regular prime factor rings”, Pacif. J. Math., 54:1 (1974), 135–144 | MR | Zbl