An additive divisor problem with a~growing number of factors
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 391-406

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau_k(n)$ be the number of representations of $n$ as the product of $k$ positive factors, $\tau_2(n)=\tau(n)$. The asymptotics of $\sum_{n\le x}\tau_k(n)\tau(n+1)$ for $80k^{10}(\ln\ln x)^3\le\ln x$ is shown to be uniform with respect to $k$.
@article{MZM_1997_61_3_a7,
     author = {N. M. Timofeev},
     title = {An additive divisor problem with a~growing number of factors},
     journal = {Matemati\v{c}eskie zametki},
     pages = {391--406},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/}
}
TY  - JOUR
AU  - N. M. Timofeev
TI  - An additive divisor problem with a~growing number of factors
JO  - Matematičeskie zametki
PY  - 1997
SP  - 391
EP  - 406
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/
LA  - ru
ID  - MZM_1997_61_3_a7
ER  - 
%0 Journal Article
%A N. M. Timofeev
%T An additive divisor problem with a~growing number of factors
%J Matematičeskie zametki
%D 1997
%P 391-406
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/
%G ru
%F MZM_1997_61_3_a7
N. M. Timofeev. An additive divisor problem with a~growing number of factors. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 391-406. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/