An additive divisor problem with a~growing number of factors
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 391-406
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\tau_k(n)$ be the number of representations of $n$ as the product of $k$ positive factors, $\tau_2(n)=\tau(n)$. The asymptotics of $\sum_{n\le x}\tau_k(n)\tau(n+1)$ for $80k^{10}(\ln\ln x)^3\le\ln x$ is shown to be uniform with respect to $k$.
@article{MZM_1997_61_3_a7,
author = {N. M. Timofeev},
title = {An additive divisor problem with a~growing number of factors},
journal = {Matemati\v{c}eskie zametki},
pages = {391--406},
publisher = {mathdoc},
volume = {61},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/}
}
N. M. Timofeev. An additive divisor problem with a~growing number of factors. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 391-406. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a7/