On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 349-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the dependence of the local geometry of real-analytic hypersurfaces in $\mathbb C^n$ on the dimension of the group of biholomorphic automorphisms of this surface. We also classify the hypersurfaces in terms of this group. We present some examples showing that the classes of the given construction are not empty. We find a new formulation of the Freeman theorem on the so-called straightening of a real-analytic $\operatorname{CR}$-submanifold in $\mathbb C^n$ with degenerate Levi form of constant rank.
@article{MZM_1997_61_3_a3,
     author = {A. S. Labovskii},
     title = {On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {349--358},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a3/}
}
TY  - JOUR
AU  - A. S. Labovskii
TI  - On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 349
EP  - 358
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a3/
LA  - ru
ID  - MZM_1997_61_3_a3
ER  - 
%0 Journal Article
%A A. S. Labovskii
%T On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces
%J Matematičeskie zametki
%D 1997
%P 349-358
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a3/
%G ru
%F MZM_1997_61_3_a3
A. S. Labovskii. On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 349-358. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a3/

[1] Shabat B. V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985

[2] Pinchuk S. I., “Golomorfnye otobrazheniya v $\mathbb C^n$ i problemy golomorfnoi ekvivalentnosti”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 9, VINITI, M., 1986, 195–223 | MR

[3] Loboda A. V., O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb C^n$, Preprint

[4] Freeman M., “Biholomorphic straightening”, Ann. of Math., 106:2 (1977), 319–352 | DOI | MR | Zbl

[5] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | MR | Zbl

[6] Kobayasi S., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Mir, M., 1981

[7] Stanton N., Infinitesimal $CR$-automorphisms of real hypersurfaces, Preprint | Zbl

[8] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969

[9] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvenno-analiticheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl

[10] Freeman M., “Real submanifolds with generate Levi form”, Proc. Symp. in Pure Math., 30 (1977), 141–147 | MR | Zbl

[11] Chirka E. M., “Vvedenie v geometriyu $CR$-mnogoobrazii”, UMN, 46 (1991), 81–164 | MR | Zbl

[12] Pinchuk S. I., Tsyganov Sh. I., “$CR$-raspryamlenie veschestvennykh mnogoobrazii v $\mathbb C^n$”, Matem. zametki, 50:6 (1991), 106–121 | MR