Integral forms of linear algebraic groups
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 424-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, an explicit description of canonical integral models of algebraic tori is presented.
@article{MZM_1997_61_3_a10,
     author = {T. V. Fomina},
     title = {Integral forms of linear algebraic groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {424--430},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a10/}
}
TY  - JOUR
AU  - T. V. Fomina
TI  - Integral forms of linear algebraic groups
JO  - Matematičeskie zametki
PY  - 1997
SP  - 424
EP  - 430
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a10/
LA  - ru
ID  - MZM_1997_61_3_a10
ER  - 
%0 Journal Article
%A T. V. Fomina
%T Integral forms of linear algebraic groups
%J Matematičeskie zametki
%D 1997
%P 424-430
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a10/
%G ru
%F MZM_1997_61_3_a10
T. V. Fomina. Integral forms of linear algebraic groups. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 424-430. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a10/

[1] Voskresenskii V. E., “Proektivnaya gruppa konechnogo separabelnogo rasshireniya”, Arifmetika i geometriya mnogoobrazii, Izd-vo KGU, Kuibyshev, 1988, 27–43 | MR

[2] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977

[3] Rohlfs J., “Über Maximate arithmetisch definite Gruppen”, Math. Ann., 234 (1978), 239–252 | DOI | MR | Zbl

[4] Nart E., Xartes X., “Additive reduction of algebraic tori”, Arch. Math., 57 (1991), 460–466 | DOI | MR | Zbl

[5] Xartes X., “The scheme of connected components of the Neron model of an algebraic torus”, J. Reine Angew. Math., 437 (1993), 167–179 | MR