Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 323-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a strengthened $C^r$ -closing lemma ($r\ge1$) for wandering chain recurrent trajectories of flows without equilibrium states on the two-dimensional torus and for wandering chain recurrent orbits of a diffeomorphism of the circle. The strengthened $C^r$ -closing lemma ($r\ge1$) is proved for a special class of infinitely smooth actions of the integer lattice $\mathbb Z^k$ on the circle. The result is applied to foliations of codimension one with trivial holonomy group on the three-dimensional torus.
@article{MZM_1997_61_3_a0,
     author = {S. Kh. Aranson and E. V. Zhuzhoma and V. S. Medvedev},
     title = {Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--331},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus
JO  - Matematičeskie zametki
PY  - 1997
SP  - 323
EP  - 331
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/
LA  - ru
ID  - MZM_1997_61_3_a0
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus
%J Matematičeskie zametki
%D 1997
%P 323-331
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/
%G ru
%F MZM_1997_61_3_a0
S. Kh. Aranson; E. V. Zhuzhoma; V. S. Medvedev. Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/

[1] Aranson S. Kh., Zhuzhoma E. V., “O $C^r$-lemme o zamykanii na poverkhnostyakh”, UMN, 43:5 (1988), 173–174 | MR | Zbl

[2] Gutierrez C., “On the $C^r$ closing lemma for the flows on the torus $\mathbb T^2$”, Ergodic Theory Dynam. Systems, 6 (1986), 45–56 | MR | Zbl

[3] Gutierrez C., “A counter-example to a $C^2$-closing lemma”, Ergodic Theory Dynam. Systems, 7 (1987), 509–530 | DOI | MR | Zbl

[4] Peixoto M. M., “Structural stability on two dimensional manifolds”, Topology, 1 (1962), 101–120 | DOI | MR | Zbl

[5] Pugh C., “The closing lemma”, Ann. of Math., 89 (1967), 956–1009 | MR | Zbl

[6] Pugh C., “Against the closing lemma”, J. Differential Equations, 17 (1975), 435–443 | DOI | MR | Zbl

[7] Peixoto M. L., “The closing lemma for generalized recurrence in the plane”, Trans. Amer. Math. Soc., 308:1 (1988), 143–158 | DOI | MR | Zbl

[8] Aranson S. Kh., “O tipichnykh bifurkatsiyakh diffeomorfizmov okruzhnosti”, Differents. uravneniya, 23:3 (1987), 388–394 | MR | Zbl

[9] Herman M., “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotation”, IHES Publ. Math., 49 (1979), 5–233 | MR | Zbl

[10] Nitecki Z., An introduction to the orbit structure of diffeomorphisms, MIT Press, Cambridge, 1971

[11] Siegel C., “Note on differential equations on the torus”, Ann. of Math., 46 (1945), 423–428 | DOI | MR | Zbl

[12] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113 (155):3 (1980), 487–492 | MR | Zbl

[13] Sinai Ya. G., Khanin K. M., “Gladkost sopryazhenii diffeomorfizmov okruzhnosti s povorotami”, UMN, 44:1 (1989), 57–82 | MR | Zbl

[14] Katznelson Y., Ornstein D., “The differentiability of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 643–680 | MR | Zbl

[15] Joccoz J. C., “Conjugaisn differentiable des diffeomorphismes du cercle dont le nombre de rotation verifie une condition diophantienne”, Ann. Sci. École Norm. Sup., 17 (1984), 333–359 | MR

[16] Imanishi H., “On the theorem of Denjoy–Sacksteder for codimension one foliations without holonomy”, J. Math. Kyoto Univ., 14:3 (1974), 607–634 | MR | Zbl

[17] Lokot T. V., “Topologicheskaya klassifikatsiya sloenii korazmernosti 1 s trivialnymi gruppami golonomii klassa $C^2$ na trekhmernom tore”, UMN, 27:3 (1972), 205 | MR | Zbl

[18] Rosenberg H., Roussarie R., “Topological equivalence of Reeb foliations”, Topology, 9:3 (1970), 231–242 | DOI | MR | Zbl

[19] Hirsch M., Differential Topology, Springer-Verlag, Berlin, 1976