Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_3_a0, author = {S. Kh. Aranson and E. V. Zhuzhoma and V. S. Medvedev}, title = {Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus}, journal = {Matemati\v{c}eskie zametki}, pages = {323--331}, publisher = {mathdoc}, volume = {61}, number = {3}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/} }
TY - JOUR AU - S. Kh. Aranson AU - E. V. Zhuzhoma AU - V. S. Medvedev TI - Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus JO - Matematičeskie zametki PY - 1997 SP - 323 EP - 331 VL - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/ LA - ru ID - MZM_1997_61_3_a0 ER -
%0 Journal Article %A S. Kh. Aranson %A E. V. Zhuzhoma %A V. S. Medvedev %T Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus %J Matematičeskie zametki %D 1997 %P 323-331 %V 61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/ %G ru %F MZM_1997_61_3_a0
S. Kh. Aranson; E. V. Zhuzhoma; V. S. Medvedev. Strengthening the $C^r$-closing lemma for dynamical systems and foliations on the torus. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a0/
[1] Aranson S. Kh., Zhuzhoma E. V., “O $C^r$-lemme o zamykanii na poverkhnostyakh”, UMN, 43:5 (1988), 173–174 | MR | Zbl
[2] Gutierrez C., “On the $C^r$ closing lemma for the flows on the torus $\mathbb T^2$”, Ergodic Theory Dynam. Systems, 6 (1986), 45–56 | MR | Zbl
[3] Gutierrez C., “A counter-example to a $C^2$-closing lemma”, Ergodic Theory Dynam. Systems, 7 (1987), 509–530 | DOI | MR | Zbl
[4] Peixoto M. M., “Structural stability on two dimensional manifolds”, Topology, 1 (1962), 101–120 | DOI | MR | Zbl
[5] Pugh C., “The closing lemma”, Ann. of Math., 89 (1967), 956–1009 | MR | Zbl
[6] Pugh C., “Against the closing lemma”, J. Differential Equations, 17 (1975), 435–443 | DOI | MR | Zbl
[7] Peixoto M. L., “The closing lemma for generalized recurrence in the plane”, Trans. Amer. Math. Soc., 308:1 (1988), 143–158 | DOI | MR | Zbl
[8] Aranson S. Kh., “O tipichnykh bifurkatsiyakh diffeomorfizmov okruzhnosti”, Differents. uravneniya, 23:3 (1987), 388–394 | MR | Zbl
[9] Herman M., “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotation”, IHES Publ. Math., 49 (1979), 5–233 | MR | Zbl
[10] Nitecki Z., An introduction to the orbit structure of diffeomorphisms, MIT Press, Cambridge, 1971
[11] Siegel C., “Note on differential equations on the torus”, Ann. of Math., 46 (1945), 423–428 | DOI | MR | Zbl
[12] Medvedev V. S., “O novom tipe bifurkatsii na mnogoobraziyakh”, Matem. sb., 113 (155):3 (1980), 487–492 | MR | Zbl
[13] Sinai Ya. G., Khanin K. M., “Gladkost sopryazhenii diffeomorfizmov okruzhnosti s povorotami”, UMN, 44:1 (1989), 57–82 | MR | Zbl
[14] Katznelson Y., Ornstein D., “The differentiability of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory Dynam. Systems, 9:4 (1989), 643–680 | MR | Zbl
[15] Joccoz J. C., “Conjugaisn differentiable des diffeomorphismes du cercle dont le nombre de rotation verifie une condition diophantienne”, Ann. Sci. École Norm. Sup., 17 (1984), 333–359 | MR
[16] Imanishi H., “On the theorem of Denjoy–Sacksteder for codimension one foliations without holonomy”, J. Math. Kyoto Univ., 14:3 (1974), 607–634 | MR | Zbl
[17] Lokot T. V., “Topologicheskaya klassifikatsiya sloenii korazmernosti 1 s trivialnymi gruppami golonomii klassa $C^2$ na trekhmernom tore”, UMN, 27:3 (1972), 205 | MR | Zbl
[18] Rosenberg H., Roussarie R., “Topological equivalence of Reeb foliations”, Topology, 9:3 (1970), 231–242 | DOI | MR | Zbl
[19] Hirsch M., Differential Topology, Springer-Verlag, Berlin, 1976