The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 252-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two integrable problems are considered: the geodesic flow of an ellipsoid (the Jacobi problem) and the rotation of a solid about its center of mass (the Euler problem). It is proved that transforming the dynamical system of the Euler problem into the dynamical system of the Jacobi problem by a continuous change of coordinates is impossible.
@article{MZM_1997_61_2_a6,
     author = {O. E. Orel},
     title = {The {Euler} problem in solid body dynamics and the {Jacobi} problem about geodesics on an ellipsoid are not topologically conjugate},
     journal = {Matemati\v{c}eskie zametki},
     pages = {252--258},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/}
}
TY  - JOUR
AU  - O. E. Orel
TI  - The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate
JO  - Matematičeskie zametki
PY  - 1997
SP  - 252
EP  - 258
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/
LA  - ru
ID  - MZM_1997_61_2_a6
ER  - 
%0 Journal Article
%A O. E. Orel
%T The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate
%J Matematičeskie zametki
%D 1997
%P 252-258
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/
%G ru
%F MZM_1997_61_2_a6
O. E. Orel. The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 252-258. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/

[1] Bolsinov A. V., Fomenko A. T., “Potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR

[2] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | Zbl

[3] Orël O. E., “Topologicheskie svoistva funktsii vrascheniya v integriruemykh zadachakh Eilera i Yakobi”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 1, 24–32 | MR | Zbl