The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 252-258
Cet article a éte moissonné depuis la source Math-Net.Ru
Two integrable problems are considered: the geodesic flow of an ellipsoid (the Jacobi problem) and the rotation of a solid about its center of mass (the Euler problem). It is proved that transforming the dynamical system of the Euler problem into the dynamical system of the Jacobi problem by a continuous change of coordinates is impossible.
@article{MZM_1997_61_2_a6,
author = {O. E. Orel},
title = {The {Euler} problem in solid body dynamics and the {Jacobi} problem about geodesics on an ellipsoid are not topologically conjugate},
journal = {Matemati\v{c}eskie zametki},
pages = {252--258},
year = {1997},
volume = {61},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/}
}
TY - JOUR AU - O. E. Orel TI - The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate JO - Matematičeskie zametki PY - 1997 SP - 252 EP - 258 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/ LA - ru ID - MZM_1997_61_2_a6 ER -
O. E. Orel. The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 252-258. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a6/
[1] Bolsinov A. V., Fomenko A. T., “Potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR
[2] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | Zbl
[3] Orël O. E., “Topologicheskie svoistva funktsii vrascheniya v integriruemykh zadachakh Eilera i Yakobi”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 1, 24–32 | MR | Zbl