Frucht theorem for inverse semigroups
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 246-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the problem of representing a finite inverse semigroup by partial transformations of a graph is treated. The notions of weighted graph and its weighted partial isomorphisms are introduced. The main result is that any finite inverse semigroup is isomorphic to the semigroup of weighted partial isomorphisms of a weighted graph. This assertion is a natural generalization of the Frucht theorem for groups.
@article{MZM_1997_61_2_a5,
     author = {N. A. Nemirovskaya},
     title = {Frucht theorem for inverse semigroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--251},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a5/}
}
TY  - JOUR
AU  - N. A. Nemirovskaya
TI  - Frucht theorem for inverse semigroups
JO  - Matematičeskie zametki
PY  - 1997
SP  - 246
EP  - 251
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a5/
LA  - ru
ID  - MZM_1997_61_2_a5
ER  - 
%0 Journal Article
%A N. A. Nemirovskaya
%T Frucht theorem for inverse semigroups
%J Matematičeskie zametki
%D 1997
%P 246-251
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a5/
%G ru
%F MZM_1997_61_2_a5
N. A. Nemirovskaya. Frucht theorem for inverse semigroups. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 246-251. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a5/

[1] König D., Theorie der endlichen und unendlichen Graphen, Leipzig, 1936

[2] Frucht R., “Herstellung Von Graphen mit Vorgegebener abstrakten Gruppe”, Compositio Math., 6 (1938), 239–250 | Zbl

[3] Molchanov V. A., “Semigroups of mapping on graphs”, Semigroup Forum, 27, 1983, 155–199 | MR | Zbl

[4] Molčanov V. A., “Concrete characterization of partial endomorphism semigroups of graphs”, Acta Sci. Math., 51 (1987), 349–363 | MR | Zbl

[5] Klifford G., Preston A., Algebraicheskaya teoriya polugrupp, T. 1, Mir, M., 1972 | Zbl