Extension of functions preserving the modulus of continuity
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 236-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the extension of a real-valued function from a subset of a metric space to the entire space is treated. An extension operator preserving the modulus of continuity of a function is proposed and its properties are studied. An application to the problem of the trace of a locally Lipschitz function on a compact subset of a metric space is given.
@article{MZM_1997_61_2_a4,
     author = {V. A. Milman},
     title = {Extension of functions preserving the modulus of continuity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {236--245},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a4/}
}
TY  - JOUR
AU  - V. A. Milman
TI  - Extension of functions preserving the modulus of continuity
JO  - Matematičeskie zametki
PY  - 1997
SP  - 236
EP  - 245
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a4/
LA  - ru
ID  - MZM_1997_61_2_a4
ER  - 
%0 Journal Article
%A V. A. Milman
%T Extension of functions preserving the modulus of continuity
%J Matematičeskie zametki
%D 1997
%P 236-245
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a4/
%G ru
%F MZM_1997_61_2_a4
V. A. Milman. Extension of functions preserving the modulus of continuity. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 236-245. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a4/

[1] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | Zbl

[2] Klyachin A. A., Miklyukov V. M., “Sledy funktsii s prostranstvennopodobnymi grafikami i zadacha o prodolzhenii funktsii pri ogranicheniyakh na gradient”, Matem. sb., 183:7 (1992), 49–64

[3] Mustata C., Extension of Holder functions and some related problems of best approximation, Research Seminars. Preprint No. 7, Babes-Bolyai University. Faculty of Mathematics, 1991, p. 71–86 | MR | Zbl

[4] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[5] Czipcer J., Cheher L., “Extention of functions satisfying a Lipschitz condition”, Acta Math. Acad. Sci. Hung., 6:1–2 (1955), 213–220 | DOI | MR

[6] Hanin L. G., “Kantorovich–Rubinshtein norm and its application in the theory of Lipschitz spaces”, Proc. Amer. Math. Soc., 115:2 (1992), 345–352 | DOI | MR | Zbl