Normal forms of Poisson structures
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 220-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, formal normal forms of Poisson structures are found. As a consequence, obstructions to the formal linearization of Poisson structures are obtained, which gives a generalization of the Weinstein linearization theorem. Lie–Sklyanin algebras corresponding to Poisson structures with trivial linearization are introduced and studied as well.
@article{MZM_1997_61_2_a3,
     author = {O. V. Lychagina},
     title = {Normal forms of {Poisson} structures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {220--235},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a3/}
}
TY  - JOUR
AU  - O. V. Lychagina
TI  - Normal forms of Poisson structures
JO  - Matematičeskie zametki
PY  - 1997
SP  - 220
EP  - 235
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a3/
LA  - ru
ID  - MZM_1997_61_2_a3
ER  - 
%0 Journal Article
%A O. V. Lychagina
%T Normal forms of Poisson structures
%J Matematičeskie zametki
%D 1997
%P 220-235
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a3/
%G ru
%F MZM_1997_61_2_a3
O. V. Lychagina. Normal forms of Poisson structures. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 220-235. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a3/

[1] Arnold V. I., “Spektralnye posledovatelnosti dlya privedeniya funktsii k normalnym formam”, Zadachi mekhaniki i matem. fiziki, Nauka, M., 1976, 7–20

[2] Lychagin V. V., “Osobennosti reshenii, spektralnye posledovatelnosti i normalnye formy algebr Li vektornykh polei”, Izv. AN SSSR. Ser. matem., 51:3 (1987), 584–612 | Zbl

[3] Lichnerowicz A., “Les varietes de Poisson et leurs algebres de Lie associees”, J. Diff. Geom., 12 (1977), 253–300 | MR | Zbl

[4] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | Zbl

[5] Brylinski J. L., “A differential complex for Poisson manifolds”, J. Diff. Geom., 28 (1988), 93–114 | MR | Zbl

[6] Weinstein A., “The local structures of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl

[7] Conn J. F., “Normal forms for smooth Poisson structures”, Ann. of Math., 121 (1985), 565–593 | DOI | MR | Zbl

[8] Conn J. F., “Normal forms for analytic Poisson structures”, Ann. of Math., 119 (1984), 577–601 | DOI | MR | Zbl