Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 201-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some classes of cuspidal domains $G\in\mathbb R^n$ are introduced, and embeddings of the form $W_p^{(l)}(G)\hookrightarrow L_q(G)$, $l\in\mathbb N$, for Sobolev spaces are established. To this end, estimates of some integral operators are needed. These operators cannot be estimated via Riesz potentials or their anisotropic analogs.
@article{MZM_1997_61_2_a2,
     author = {D. A. Labutin},
     title = {Integral representations of functions and embeddings of {Sobolev} spaces on cuspidal domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {201--219},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a2/}
}
TY  - JOUR
AU  - D. A. Labutin
TI  - Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains
JO  - Matematičeskie zametki
PY  - 1997
SP  - 201
EP  - 219
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a2/
LA  - ru
ID  - MZM_1997_61_2_a2
ER  - 
%0 Journal Article
%A D. A. Labutin
%T Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains
%J Matematičeskie zametki
%D 1997
%P 201-219
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a2/
%G ru
%F MZM_1997_61_2_a2
D. A. Labutin. Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 201-219. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a2/

[1] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4 (46):3 (1938), 471–497 | Zbl

[2] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[3] Adams R. A., Fournier J., “Cone conditions and properties of Sobolev spaces”, J. Math. Anal. Appl., 61:3 (1977), 713–734 | DOI | MR | Zbl

[4] Reshetnyak Yu. G., “Integralnye predstavleniya funktsii v oblastyakh s negladkoi granitsei”, Sib. matem. zh., 21:6 (1980), 108–116 | MR | Zbl

[5] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983

[6] Besov O. V., “Integralnye predstavleniya funktsii i teoremy vlozheniya – dlya oblasti s usloviem gibkogo roga”, Tr. MIAN, 170, Nauka, M., 1984, 12–30 | MR | Zbl

[7] Besov O. V., “Vlozhenie prostranstv Soboleva na oblastyakh s usloviem raspadayuschegosya gibkogo konusa”, Tr. MIAN, 173, Nauka, M., 1986, 14–31 | MR | Zbl

[8] Globenko I. G., “Nekotorye voprosy teorii vlozheniya dlya oblastei s osobennostyami na granitse”, Matem. sb., 57:2 (1962), 201–224 | MR | Zbl

[9] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[10] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[11] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[12] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966

[13] Deny J., Lions J. L., “Les espaces dy type de Beppo Levi”, Ann. Inst. Fourier, 5 (1953–1954), 305–370 | MR

[14] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | Zbl

[15] Burenkov V. I., Funktsionalnye prostranstva. Osnovnye integralnye neravenstva, svyazannye s prostranstvami $L_p$, Izd-vo UDN, M., 1989