Exact smooth classification of hamiltonian vector fields on two-dimensional manifolds
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 179-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete exact classification of Hamiltonian systems with Morse Hamiltonians on two-dimensional manifolds is given, i.e., the systems are classified up to diffeomorphisms mapping vector fields into vector fields. The classification imposes no restrictions on Morse functions.
@article{MZM_1997_61_2_a1,
     author = {B. S. Kruglikov},
     title = {Exact smooth classification of hamiltonian vector fields on two-dimensional manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--200},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a1/}
}
TY  - JOUR
AU  - B. S. Kruglikov
TI  - Exact smooth classification of hamiltonian vector fields on two-dimensional manifolds
JO  - Matematičeskie zametki
PY  - 1997
SP  - 179
EP  - 200
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a1/
LA  - ru
ID  - MZM_1997_61_2_a1
ER  - 
%0 Journal Article
%A B. S. Kruglikov
%T Exact smooth classification of hamiltonian vector fields on two-dimensional manifolds
%J Matematičeskie zametki
%D 1997
%P 179-200
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a1/
%G ru
%F MZM_1997_61_2_a1
B. S. Kruglikov. Exact smooth classification of hamiltonian vector fields on two-dimensional manifolds. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 179-200. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a1/

[1] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | Zbl

[2] Bolsinov A. V., “Gladkaya traektornaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Matem. sb., 186:1 (1995), 3–28 | MR | Zbl

[3] Ito H., “Action-angle coordinates at singularities for analytic integrable systems”, Math. Z., 206 (1991), 363–407 | DOI | MR | Zbl

[4] Elliason L. H., “Normal forms for Hamiltonian systems with Poisson commuting integrals. Elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR

[5] Colin De Verdiere J., Vey J., “Le lemme de Morse isochore”, Topology, 18 (1979), 283–293 | DOI | MR | Zbl

[6] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120:2 (1965), 286–294 | DOI | MR | Zbl

[7] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | Zbl

[8] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (272) (1990), 59–77 | MR | Zbl

[9] Dufour J.-P., Molino P., Toulet A., “Classification des systemes integrables en dimension 2 et invariants des modeles de Fomenko”, C. R. Acad. Sci. Paris, 318:10 (1994), 949–952 | MR | Zbl