On a~Peetre functional
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 26-33
Voir la notice de l'article provenant de la source Math-Net.Ru
The Peetre $K$-functional is often used to describe and study the interpolation spaces associated with the real variable method. In the paper a modification of this functional, the Peetre $K_2$-functional
$$
K_2(t,\mathbf x)=\inf_{\mathbf x=\mathbf x_1+\mathbf x_2}\sqrt{\|\mathbf x_1\|_1^2+t^2\|\mathbf x_2\|_2^2}
$$
is treated as a function of $t$ for fixed $\mathbf x$, and its properties are studied. Several particular cases are considered and classes of functions expressible as $K_2(t)$ are investigated.
@article{MZM_1997_61_1_a3,
author = {G. M. Berkolaiko},
title = {On {a~Peetre} functional},
journal = {Matemati\v{c}eskie zametki},
pages = {26--33},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a3/}
}
G. M. Berkolaiko. On a~Peetre functional. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a3/