Pitt's theorem for the Lorentz and Orlicz sequence spaces
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L(X,Y)$ be the Banach space of all continuous linear operators from $X$ to $Y$, and let $K(X,Y)$ be the subspace of compact operators. Some versions of the classical Pitt theorem (if $p>q$, then $K(\ell_p,\ell_q)=L(\ell_p,\ell_q)$) for subspaces of Lorentz and Orlicz sequence spaces are established.
@article{MZM_1997_61_1_a2,
author = {E. A. Jausekle and \`E. F. Oja},
title = {Pitt's theorem for the {Lorentz} and {Orlicz} sequence spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {18--25},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a2/}
}
E. A. Jausekle; È. F. Oja. Pitt's theorem for the Lorentz and Orlicz sequence spaces. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a2/