Pitt's theorem for the Lorentz and Orlicz sequence spaces
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 18-25
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $L(X,Y)$ be the Banach space of all continuous linear operators from $X$ to $Y$, and let $K(X,Y)$ be the subspace of compact operators. Some versions of the classical Pitt theorem (if $p>q$, then $K(\ell_p,\ell_q)=L(\ell_p,\ell_q)$) for subspaces of Lorentz and Orlicz sequence spaces are established.
@article{MZM_1997_61_1_a2,
author = {E. A. Jausekle and \`E. F. Oja},
title = {Pitt's theorem for the {Lorentz} and {Orlicz} sequence spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {18--25},
year = {1997},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a2/}
}
E. A. Jausekle; È. F. Oja. Pitt's theorem for the Lorentz and Orlicz sequence spaces. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a2/
[1] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer, Berlin–Heidelberg–N. Y., 1977
[2] Lacey E., The isometric theory of classical Banach spaces, Springer, Berlin–Heidelberg–N. Y., 1974 | Zbl
[3] Oja E., “On M-ideals of compact operators and Lorentz sequence spaces”, Proc. Estonian Acad. Sci. Phys. Math., 40:1 (1991), 31–36 | MR | Zbl
[4] Tong A. E., Wilken D. R., “The uncomplemented subspace $K(E,F)$”, Studia Math., 37:3 (1971), 227–236 | Zbl
[5] Kalton N. J., “Spaces of compact operators”, Math. Ann., 208:4 (1974), 267–278 | DOI | MR | Zbl
[6] Diestel J., Uhl J. J., Jr., Vector measures, AMS, Providence, 1977 | Zbl