On the Lindblad equation with unbounded time-dependent coefficients
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 125-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new a priori estimates for the resolvent of a minimal quantum dynamical semigroup. These estimates simplify well-known conditions sufficient for conservativity and impose continuity conditions on the time-dependent operator coefficients ensuring the existence of conservative solutions of the Markov evolution equations.
@article{MZM_1997_61_1_a11,
     author = {A. M. Chebotarev and J. C. Garcia and R. B. Quezada},
     title = {On the {Lindblad} equation with unbounded time-dependent coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {125--140},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a11/}
}
TY  - JOUR
AU  - A. M. Chebotarev
AU  - J. C. Garcia
AU  - R. B. Quezada
TI  - On the Lindblad equation with unbounded time-dependent coefficients
JO  - Matematičeskie zametki
PY  - 1997
SP  - 125
EP  - 140
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a11/
LA  - ru
ID  - MZM_1997_61_1_a11
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%A J. C. Garcia
%A R. B. Quezada
%T On the Lindblad equation with unbounded time-dependent coefficients
%J Matematičeskie zametki
%D 1997
%P 125-140
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a11/
%G ru
%F MZM_1997_61_1_a11
A. M. Chebotarev; J. C. Garcia; R. B. Quezada. On the Lindblad equation with unbounded time-dependent coefficients. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 125-140. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a11/

[1] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976

[2] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR

[3] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[4] Chebotarev A. M., “Necessary and sufficient conditions for conservativeness of dynamical semigroup”, J. Soviet Math., 56:5 (1991), 2697–2719 | DOI | MR | Zbl

[5] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroup”, J. Funct. Anal., 118:1 (1993), 131–153 | DOI | MR | Zbl

[6] Chebotarev A. M., “Dostatochnoe uslovie konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl

[7] Chebotarev A. M., Applications of quantum probability to classical stochastics, Preprint No 246, Centro V. Volterra, Univ. degli studi di Roma “Tor Vergata”, 1996

[8] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal. (to appear)

[9] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | Zbl

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[11] McKean G., Stochastic integrals, Univ. Press, Princeton, 1981