Expansion of entire functions into Lagrange series
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 119-124
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the problem of representing entire functions, in spaces described by the order and the type of these functions, by Lagrange series that converge in the natural topology in these spaces; this topology is stronger than the topology of compact convergence.
@article{MZM_1997_61_1_a10,
author = {Yu. N. Frolov},
title = {Expansion of entire functions into {Lagrange} series},
journal = {Matemati\v{c}eskie zametki},
pages = {119--124},
year = {1997},
volume = {61},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a10/}
}
Yu. N. Frolov. Expansion of entire functions into Lagrange series. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 119-124. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a10/
[1] Ibragimov I. I., Metody interpolyatsii funktsii i nekotorye ikh primeneniya, Nauka, M., 1971
[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976
[3] Frolov Yu. N., “Ob approksimatsii reshenii uravneniya beskonechnogo poryadka v obobschennykh proizvodnykh posredstvom elementarnykh reshenii”, Issledovaniya po teorii approksimatsii funktsii, Ufa, 1979, 268–281