Butler groups with a single $\tau$-adic relation
Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 882-887.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a $\tau$-adic relation characterizing a Butler group is piecewise rational.
@article{MZM_1996_60_6_a9,
     author = {E. M. Kovyazina},
     title = {Butler groups with a single $\tau$-adic relation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {882--887},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a9/}
}
TY  - JOUR
AU  - E. M. Kovyazina
TI  - Butler groups with a single $\tau$-adic relation
JO  - Matematičeskie zametki
PY  - 1996
SP  - 882
EP  - 887
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a9/
LA  - ru
ID  - MZM_1996_60_6_a9
ER  - 
%0 Journal Article
%A E. M. Kovyazina
%T Butler groups with a single $\tau$-adic relation
%J Matematičeskie zametki
%D 1996
%P 882-887
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a9/
%G ru
%F MZM_1996_60_6_a9
E. M. Kovyazina. Butler groups with a single $\tau$-adic relation. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 882-887. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a9/

[1] Butler M. C. R., “A class of torsion free abelian groups of finite rank”, Proc. London Math. Soc., 3:15 (1965), 680–698 | DOI | MR

[2] Fomin A. A., “Abelevy gruppy s odnim $\tau$-adicheskim sootnosheniem”, Algebra i logika, 28:1 (1989), 83–104 | MR | Zbl

[3] Arnold D. M., “Finite rank torsion free abelian groups and rings”, Lecture Notes in Math., 931, Springer, Berlin, 1982, 5–20

[4] Fomin A. A., “The category of quasihomomorphisms of abelian torsion free groups of finite rank, 1”, Contemporary Mathematics, 131, AMS, 1992, 91–111