Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes
Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 845-850

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr C$ be one of the absolute Borel classes ${\mathscr M}_\alpha$, ${\mathscr A}_\alpha$, $1\le\alpha\omega_1$ or one of the absolute projective classes ${\mathscr P}_k$, $k\ge1$. A map of an $n$-dimensional space $X\in\mathscr C$ onto the Hilbert cube which is an $n$-soft map in Shchepin's sense and universal in the class of maps of spaces of dimension smaller that or equal to $n$ from the class $\mathscr C$ into separable metrizable spaces is constructed.
@article{MZM_1996_60_6_a5,
     author = {M. M. Zarichnyi},
     title = {Universal $n$-soft maps of $n$-dimensional spaces in absolute {Borel} and projective classes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {845--850},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a5/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes
JO  - Matematičeskie zametki
PY  - 1996
SP  - 845
EP  - 850
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a5/
LA  - ru
ID  - MZM_1996_60_6_a5
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes
%J Matematičeskie zametki
%D 1996
%P 845-850
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a5/
%G ru
%F MZM_1996_60_6_a5
M. M. Zarichnyi. Universal $n$-soft maps of $n$-dimensional spaces in absolute Borel and projective classes. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 845-850. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a5/