Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_60_6_a10, author = {S. I. Svinolupov and I. T. Habibullin}, title = {Integrable boundary conditions for many-component burgers equations}, journal = {Matemati\v{c}eskie zametki}, pages = {888--901}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a10/} }
TY - JOUR AU - S. I. Svinolupov AU - I. T. Habibullin TI - Integrable boundary conditions for many-component burgers equations JO - Matematičeskie zametki PY - 1996 SP - 888 EP - 901 VL - 60 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a10/ LA - ru ID - MZM_1996_60_6_a10 ER -
S. I. Svinolupov; I. T. Habibullin. Integrable boundary conditions for many-component burgers equations. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 888-901. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a10/
[1] Calogero F., “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is integrability?, ed. V. E. Zakharov, Springer-Verlag, Berlin, 1991 | Zbl
[2] Mikhailov A. V., Shabat A. B., Sokolov V. V., “The symmetry approach to classification of integrable equations”, What is integrability?, ed. V. E. Zakharov, Springer-Verlag, Berlin, 1991
[3] Moser J., “Finitely many mass points on the line under the influence of an exponential potential integrable system”, Lecture Notes in Phys., 38, 1975, 467–498
[4] Sklyanin E. K., “Granichnye usloviya dlya integriruemykh uravnenii”, Funktsion. analiz i ego prilozh., 21:1 (1987), 86–87 | MR | Zbl
[5] Gurel B., Gurses M., Habibullin I. T., “Boundary value problems compatible with symmetries”, Phys. Letts A, 190 (1994), 231–237 | DOI | MR
[6] Svinolupov S. I., “On the analogues of the Burgers equation”, Phys. Letts A, 135 (1989), 32–36 | DOI | MR
[7] Vinberg E. B., “Teoriya odnorodnykh vypuklykh konusov”, Tr. MMO, 12, URSS, M., 1963, 303–358 | MR | Zbl
[8] Medina A., “Sur quelques algebres symetriques a gaushe dont l'algebre de Lie sous-jacente est resoluble”, C. R. Acad. Sci. Paris. Ser. A, 286:3 (1978), 173–176 | MR | Zbl
[9] Svinolupov S. I., Sokolov V. V., “Vektorno-matrichnye obobscheniya integriruemykh uravnenii matematicheskoi fiziki”, TMF, 100:2 (1994), 214–218 | MR | Zbl
[10] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | Zbl
[11] Habibullin I. T., “Symmetries of boundary problems”, Phys. Letts A, 178 (1993), 369–375 | DOI | MR
[12] Svinolupov S. I., “Generalized Schroedinger equations and Jordan pairs”, Comm. Math. Phys., 143 (1992), 559–575 | DOI | MR | Zbl
[13] Svinolupov S. I., “Iordanovy algebry i obobschennoe uravnenie Kortevega–de Friza”, TMF, 87:3 (1991), 391–403 | MR | Zbl