An extremum problem related to Morera's theorem
Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 804-809.

Voir la notice de l'article provenant de la source Math-Net.Ru

The property of being holomorphic is studied for a continuous function whose integrals over the boundaries of the triangles from a specified set are zero. The results substantially strengthen Morera's and Dzyadyk's well-known theorems.
@article{MZM_1996_60_6_a1,
     author = {V. V. Volchkov},
     title = {An extremum problem related to {Morera's} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {804--809},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - An extremum problem related to Morera's theorem
JO  - Matematičeskie zametki
PY  - 1996
SP  - 804
EP  - 809
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a1/
LA  - ru
ID  - MZM_1996_60_6_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T An extremum problem related to Morera's theorem
%J Matematičeskie zametki
%D 1996
%P 804-809
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a1/
%G ru
%F MZM_1996_60_6_a1
V. V. Volchkov. An extremum problem related to Morera's theorem. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 804-809. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a1/

[1] Berenstein C. A., Gay R., “Le problem de Pompeiu local”, J. Anal. Math., 52 (1989), 133–166 | DOI | MR | Zbl

[2] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR

[3] Volchkov V. V., “O funktsiyakh s nulevymi integralami po nekotorym mnozhestvam”, Dokl. AN USSR. Ser. A, 1990, no. 8, 9–11 | MR | Zbl

[4] Volchkov V. V., DonGU, Dep. UkrNIINTI, No 1748–Uk90, Donetsk, 1990

[5] Volchkov V. V., O nekotorykh voprosakh, svyazannykh s problemoi Pompeiyu, Dep. GNTB Ukrainy, No 2390–Uk93, DonGU, Donetsk, 1993

[6] Volchkov V. V., “Teoremy tipa Morery v oblastyakh so slabym usloviem konusa”, Izv. vuzov. Matem., 1993, no. 10, 15–20 | MR | Zbl

[7] Dzyadyk V. K., “Geometricheskoe opredelenie analiticheskikh funktsii”, UMN, 15:1 (1960), 191–194 | MR

[8] Volchkov V. V., “Problemy tipa Pompeiyu na mnogoobraziyakh”, Dokl. AN Ukrainy, 1993, no. 11, 9–12 | MR

[9] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 31–36 | MR | Zbl

[10] Volchkov V. V., “Morera type theorems on the unit disk”, Anal. Math., 20 (1994), 49–63 | DOI | MR | Zbl

[11] Berenstein C. A., Chang D. C., Pascuas D., Zalcman L., “Variations on the theorem of Morera”, Contemp. Math., 137 (1992), 63–78 | MR | Zbl

[12] Kirillov A. A., Gvishmani A. D., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1979

[13] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987

[14] Timan A. F., Trofimov V. N., Vvedenie v teoriyu garmonicheskikh funktsii, Nauka, M., 1968

[15] Khërmander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965