Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_60_5_a4, author = {V. P. Maslov and A. E. Ruuge}, title = {Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface}, journal = {Matemati\v{c}eskie zametki}, pages = {692--707}, publisher = {mathdoc}, volume = {60}, number = {5}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/} }
TY - JOUR AU - V. P. Maslov AU - A. E. Ruuge TI - Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface JO - Matematičeskie zametki PY - 1996 SP - 692 EP - 707 VL - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/ LA - ru ID - MZM_1996_60_5_a4 ER -
%0 Journal Article %A V. P. Maslov %A A. E. Ruuge %T Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface %J Matematičeskie zametki %D 1996 %P 692-707 %V 60 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/ %G ru %F MZM_1996_60_5_a4
V. P. Maslov; A. E. Ruuge. Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 692-707. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/
[1] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)\times u_+^{k/2}(\xi)\,d\xi\big/\int u_+^{k/2}(\xi)\,d\xi$”, Funktsion. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl
[2] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)\times u_+^{(n-2)/2}(\xi)\,d\xi\big/\int u_+^{(n-2)/2}(\xi)\,d\xi$ v sluchayakh $n=2$ i $3$”, Matem. zametki, 55:3 (1994), 96–108 | MR | Zbl
[3] Pokhozhaev S. I., “Ob uravneniyakh Maslova”, Differents. uravneniya, 31:2 (1995), 338–349 | MR | Zbl
[4] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields, II”, Russ. J. Math. Phys., 3:1 (1995), 123–132 | MR | Zbl
[5] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds and (in the ergodic case) with constant energy manifolds corresponding to semiclassical self-consistent fields”, Russ. J. Math. Phys., 3:4 (1995), 529–534 | MR | Zbl
[6] Maslov V. P., Shvedov O. Yu., “Kvantovanie v okrestnosti klassicheskikh reshenii v zadache $N$ chastits i sverkhtekuchest”, TMF, 98:2 (1994), 266–288 | MR | Zbl