Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 692-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations describing quasiparticles that correspond to classical self-consistent fields are reduced to a form symmetric with respect to an indefinite metric.
@article{MZM_1996_60_5_a4,
     author = {V. P. Maslov and A. E. Ruuge},
     title = {Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--707},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - A. E. Ruuge
TI  - Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface
JO  - Matematičeskie zametki
PY  - 1996
SP  - 692
EP  - 707
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/
LA  - ru
ID  - MZM_1996_60_5_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%A A. E. Ruuge
%T Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface
%J Matematičeskie zametki
%D 1996
%P 692-707
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/
%G ru
%F MZM_1996_60_5_a4
V. P. Maslov; A. E. Ruuge. Some identities for the integro-differential equations describing quasiparticles on an isoenergetic surface. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 692-707. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a4/

[1] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)\times u_+^{k/2}(\xi)\,d\xi\big/\int u_+^{k/2}(\xi)\,d\xi$”, Funktsion. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl

[2] Maslov V. P., “Ob integralnom uravnenii vida $u(x)=F(x)+\int G(x,\xi)\times u_+^{(n-2)/2}(\xi)\,d\xi\big/\int u_+^{(n-2)/2}(\xi)\,d\xi$ v sluchayakh $n=2$ i $3$”, Matem. zametki, 55:3 (1994), 96–108 | MR | Zbl

[3] Pokhozhaev S. I., “Ob uravneniyakh Maslova”, Differents. uravneniya, 31:2 (1995), 338–349 | MR | Zbl

[4] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields, II”, Russ. J. Math. Phys., 3:1 (1995), 123–132 | MR | Zbl

[5] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds and (in the ergodic case) with constant energy manifolds corresponding to semiclassical self-consistent fields”, Russ. J. Math. Phys., 3:4 (1995), 529–534 | MR | Zbl

[6] Maslov V. P., Shvedov O. Yu., “Kvantovanie v okrestnosti klassicheskikh reshenii v zadache $N$ chastits i sverkhtekuchest”, TMF, 98:2 (1994), 266–288 | MR | Zbl