Analogs of an inequality due to the Markov brothers for polynomials on a~cube in $\mathbb R^m$
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 783-787.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1996_60_5_a16,
     author = {V. I. Skalyga},
     title = {Analogs of an inequality due to the {Markov} brothers for polynomials on a~cube in $\mathbb R^m$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {783--787},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a16/}
}
TY  - JOUR
AU  - V. I. Skalyga
TI  - Analogs of an inequality due to the Markov brothers for polynomials on a~cube in $\mathbb R^m$
JO  - Matematičeskie zametki
PY  - 1996
SP  - 783
EP  - 787
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a16/
LA  - ru
ID  - MZM_1996_60_5_a16
ER  - 
%0 Journal Article
%A V. I. Skalyga
%T Analogs of an inequality due to the Markov brothers for polynomials on a~cube in $\mathbb R^m$
%J Matematičeskie zametki
%D 1996
%P 783-787
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a16/
%G ru
%F MZM_1996_60_5_a16
V. I. Skalyga. Analogs of an inequality due to the Markov brothers for polynomials on a~cube in $\mathbb R^m$. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 783-787. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a16/

[1] Bernshtein S. N., Sobranie sochinenii, T. 2, AN SSSR, M., 1954

[2] Kellog O. D., Math. Zeit., 27:1 (1927), 55–66 | DOI

[3] Don R., J. Approx. Theory, 11:3 (1974) | MR

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959

[5] Ganzburg M. I., UMN, 34:1 (1979), 225–226 | MR | Zbl