Generalized polynomial approximation providing the best reference
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 658-669
Cet article a éte moissonné depuis la source Math-Net.Ru
We pose the extremum problem of finding a polynomial approximation for a function of several variables so that this approximation by a fragment of the function provides the best reference. We obtain an upper bound for the modulus of informativity of polynomials and rational functions.
@article{MZM_1996_60_5_a1,
author = {V. I. Berdyshev},
title = {Generalized polynomial approximation providing the best reference},
journal = {Matemati\v{c}eskie zametki},
pages = {658--669},
year = {1996},
volume = {60},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a1/}
}
V. I. Berdyshev. Generalized polynomial approximation providing the best reference. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 658-669. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a1/
[1] Beloglazov I. N., Dzhanzhgava G. I., Chigin G. P., Osnovy navigatsii po geofizicheskim polyam, Nauka, M., 1985
[2] Krasovskii A. A., Beloglazov I. N., Chigin G. P., Teoriya korrelyatsionno-ekstremalnykh navigatsionnykh sistem, Nauka, M., 1979
[3] Berdyshev V. I., “Polinomialnaya approksimatsiya, svyazannaya s navigatsiei po geofizicheskim polyam”, Dokl. RAN, 6 (1992), 1099–1102 | Zbl
[4] Berdyshev V. I., “Polynomial approximation and geophysical-field navigation problem”, Russian J. Numer. Anal. Math. Modelling, 8:2 (1993), 83–100 | MR | Zbl
[5] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969
[6] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949