Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 556-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the solutions of the inequality $Lu\le\varphi(|{\operatorname{grad}u}|)$, where $L$ is a uniformly elliptic homogeneous operator and $\varphi$ is a function increasing faster than any linear function but not faster than $\xi\ln\xi$, in the unbounded domain $$ \biggl\{x\in\mathbb R^n\biggm| \sum_{i=2}^nx_i^2\bigl(\psi(x_1)\bigr)^2, -\infty\infty\biggr\}, $$ where $\psi$ is a bounded function with bounded derivative. We estimate the growth of the solutions in terms of $\int_0^{x_1}\frac{dr}{\psi(r)}$. For the special case in which $\varphi(\xi)=a\xi\ln\xi+C$, the solutions $u(x_1,x_2,\dots,x_n)$ grow as $\bigl(\int_0^{x_1}\frac{dr}{\varphi(r)}\bigr)^N$, where $N$ is any given number and $a=a(N)$.
@article{MZM_1996_60_4_a6,
     author = {A. B. Shapoval},
     title = {Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain},
     journal = {Matemati\v{c}eskie zametki},
     pages = {556--568},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/}
}
TY  - JOUR
AU  - A. B. Shapoval
TI  - Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain
JO  - Matematičeskie zametki
PY  - 1996
SP  - 556
EP  - 568
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/
LA  - ru
ID  - MZM_1996_60_4_a6
ER  - 
%0 Journal Article
%A A. B. Shapoval
%T Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain
%J Matematičeskie zametki
%D 1996
%P 556-568
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/
%G ru
%F MZM_1996_60_4_a6
A. B. Shapoval. Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 556-568. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/

[1] Landis E. M., “Otsenki reshenii kvazilineinykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Tr. sem. im. I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 45–62 | MR | Zbl