Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 556-568
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the solutions of the inequality $Lu\le\varphi(|{\operatorname{grad}u}|)$, where $L$ is a uniformly elliptic homogeneous operator and $\varphi$ is a function increasing faster than any linear function but not faster than $\xi\ln\xi$, in the unbounded domain
$$
\biggl\{x\in\mathbb R^n\biggm|
\sum_{i=2}^nx_i^2\bigl(\psi(x_1)\bigr)^2, -\infty\infty\biggr\},
$$
where $\psi$ is a bounded function with bounded derivative. We estimate the growth of the solutions in terms of $\int_0^{x_1}\frac{dr}{\psi(r)}$. For the special case in which $\varphi(\xi)=a\xi\ln\xi+C$, the solutions $u(x_1,x_2,\dots,x_n)$ grow as $\bigl(\int_0^{x_1}\frac{dr}{\varphi(r)}\bigr)^N$, where $N$ is any given number and $a=a(N)$.
@article{MZM_1996_60_4_a6,
author = {A. B. Shapoval},
title = {Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain},
journal = {Matemati\v{c}eskie zametki},
pages = {556--568},
publisher = {mathdoc},
volume = {60},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/}
}
A. B. Shapoval. Behavior of solutions of quasilinear elliptic inequalities in an unbounded domain. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 556-568. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a6/