Smooth approximations to solutions of perturbed Weyl and Dirac equations
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 538-555
Cet article a éte moissonné depuis la source Math-Net.Ru
Iterations of spherical mean values of the initial condition are used to approximate solutions of the Weyl and the Dirac equations in the Hilbert space $[L^2(\mathbb R^n)]^N$ . In this work we smooth the potential and the initial condition, without restrictions on the increase rate as $\|x\|\to\infty$. By iterating perturbations of such mean values, we prove apriori estimates for the approximate solutions of the perturbed Weyl and Dirac equations in the topology of uniform convergence of time and space derivatives on compact subsets in $\mathbb R\times\mathbb R^n$.
@article{MZM_1996_60_4_a5,
author = {I. Chargoi},
title = {Smooth approximations to solutions of perturbed {Weyl} and {Dirac} equations},
journal = {Matemati\v{c}eskie zametki},
pages = {538--555},
year = {1996},
volume = {60},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a5/}
}
I. Chargoi. Smooth approximations to solutions of perturbed Weyl and Dirac equations. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 538-555. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a5/
[1] Quezada R., “Path integral for Dirac equations in momentum space”, Univ. Iagellonicae Acta Math. Fasciculus, 30 (1993), 69–82 | MR | Zbl
[2] Chargoy J., Quezada R., “Approximation of the solutions of Weyl and Dirac equations by spherical means”, Math. Notes, 55:3–4 (1994), 327–333 | DOI | MR | Zbl
[3] Chargoy J., The Compact-Open topology for Bounded Operators on Fréchet Spaces, Reporte de Investigación, UAM-I, México, 1995
[4] Hörmander L., The Analysis of Linear Partial Differential Operators, V. I, Springer-Verlag, Berlin, 1983
[5] Rudin W., Functional Analysis, McGraw-Hill, N. Y., 1973 | Zbl
[6] Royden H. L., Real Analysis, McMillan, 1974